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Abstract—With the rapid increase in the penetration level
of electric vehicles (EVs), accurate modelling of the impacts of
EVs on the electricity grid in cities is of important value to
grid operators. In this paper, data from five charging stations
(CSs) in Uppsala, Sweden are analysed. Then a spatial model
is developed and validated using the previously analysed data.
The results show that there is a big difference in the occupancy
rate of stations. Some stations are more frequently used than
others. Also, the energy charged in an average charging session
is equivalent to driving for 27.7 km, which is 6% more than the
daily driving distances in Uppsala. It is also shown that the load
profile in some CSs is a mixture between two or more different
load profile, for example residential and workplace profiles. The
produced model can reflect the load of the charging stations
when considering every CS to represent a mixture of different
distinct charging profiles.

I. INTRODUCTION

Electric vehicles (EVs) are quickly replacing the internal
combustion engine vehicles (ICEVs). It is expected that there
will be more than 10 million EVs on the road by 2020
compared with the 1.26 million in 2015 [1]. As a result
of this increase several challenges concerning the charging
infrastructure are expected to arise [2].

Few papers analysed data from CSs [3], for example
[3]–[6]. The authors in [3] analysed data from three EV
fleets in Germany. They used the data to develop a model
for EV charging in which they compared three different
charging scenarios. The analysis done in [4] showed that the
charging frequency is higher in fast chargers compared with
normal chargers. A non parametric Copula function along
with Bayesian inference were used to develop the mobility
patterns in [5]. The results were then validated using mobility
data from a pilot EV demonstration trial. Data from eight
CSs in Sweden were analysed in [6]. The authors noted that
the charging frequency varies even between neighbouring
stations.

In [7], a model for public fast and slow charging in
Japan was developed. The model used Monte Carlo method
with different states that indicated whether the vehicle is
parked, driving or charging. The authors showed that the
waiting time increases exponentially with the decrease of
the number of fast chargers. A recent study showed that
the charging behaviour have around 10% impact on the
occupancy rate of charging stations (CSs) [8]. The authors
then compared compared two different distributions for CSs:
a uniformly distributed network, and distributed over both

residential parking lots and petrol stations. The number of
unused charging ports was shown to be higher in case of the
uniformly distributed CSs network.

Markov models have been extensively used to describe
travel patterns [9]–[14]. In [9], [10] a semi-Markov chain
was developed to describe the traveling patterns. In [11]
a hidden Markov chain model was developed. In [12] a
Markov model with states representing different locations
was used as basis for a controlled charging scheme, where
an aggregator schedules charging of vehicles to minimise
the power loss and ensuring that the grid voltage and power
flow are within limits. An alternative method was presented
in [13], where the states represented different trip purposes.
Unlike the previous Markov models, the Markov chain states
in [14] represented road junctions in a spatial network.

This paper complements the previous research gaps by
analysing data from CSs in Sweden. In this paper, a spatial
Markov chain model to generate a stochastic spatial load
for EV charging in cities was developed and validated
using the data from the Swedish CSs. Here, the authors
explore the possibility of representing some CSs with several
different charging profiles which, to the best of the authors’
knowledge, was not done before.

A description of the used data in this paper is presented
in Section II. The theoretical background for the modelling
methods is presented in Section III. Section IV provides the
results of the study, and conclusions are drawn in Section V.

II. DATA

A. Charging stations data

Data from five CSs in Uppsala, Sweden were analysed
in this paper. The data represented around 3000 charging
sessions that took place from 30 June 2016 – 11 July
2017, though not all stations recorded data for the whole
duration. For every charging session, the time plugged in,
unplugging time, and the amount of charged energy were
recorded. Table I presents a summary of the CSs. Charging
frequency is defined as the number of charging sessions
performed in the station per recorded day. This measure
helps in identifying the more frequently occupied stations
which depended on users’ preferences. It can be seen from
the table that there is a big variation between the charging
frequency among the stations. Some stations with both high
charging power and large number of charging ports are not
as frequently occupied with their other stations with low
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TABLE I
INFORMATION ABOUT THE CSS FROM WHICH THE VALIDATION DATA

WERE OBTAINED.

Station Charging power Number of Charging
(kW) ports frequency

Station 1 3.7 8 7.3
Station 2 22 10 1
Station 3 22 4 0.6
Station 4 3.7 2 1.3
Station 5 22 2 3.2

charging power and small number of charging ports. It is also
important to note that the charging frequency is not affected
by the cost of charging, which is zero in all the stations
in Uppsala. In Uppsala, drivers of EVs have only to pay
the parking fee, similar to ICEVs, at the CSs and charging
is done for free. Further studies are needed to determine
the parameters that affect the charging frequency of CSs in
Sweden.

The recorded data were used to generate a charging load
for every CS. The load was further used to validate the
developed spatial model.

B. Swedish mobility data

In this study we used data from the 2005–2006 Swedish
travel survey [15]. This survey contained data regarding trips
departure and arrival time, departure and arrival locations,
trip distances, and reasons for trips. In this paper, the trips
were grouped and categorised based on the arrival and
departure locations. In total, three categories were formed:
Work, Home, and Other [9]. Category ”Work” contained
locations like workplaces, schools, and universities. Res-
idential locations were grouped in the ”Home” category.
Finally, the rest of the locations were considered to belong
to the ”Other” category. The ”Other” category represents
trips with shopping and leisure reasons. Data about trips
between every two categories were grouped together to form
six combinations of data.

Every location category was expected to represent a
charging profile as presented in [9]. Workplace charging,
taking place at the ”Work” locations, is expected to have an
early morning load profile mostly on weekdays. Residential
charging, taking place at the ”Home” locations, was expected
to be a late afternoon or early evening charging load profile.
The category of ”Other” locations represented the charging
profile of public parking lots which was expected to be a
flat midday to late afternoon load profile.

III. METHODS

The model could be divided into three major building
blocks. The first building block estimated the probabilities
of performing trips, and it is presented in Section III-A.
Section III-B describes the second building block which
distributed the vehicles on a spatial network. Finally, the
third building block estimated the charging load and it is
presented in Section III-C.

A. Markov chain

A Markov chain is a stochastic process {Xt}∞t=0 where the
probability of the next state only depends on the probability

of the current state [16], [17]:

P (Xt+1 = j|Xt = i, ...,X1, X0) = P (Xt+1 = j|Xt = i)

= pij , (1)

where pij is the probability to transition from state i to
state j. Both i, j ∈ S = {1, 2, 3, ...,M}, a state space with
M states. The probabilities of transition from states can be
presented as the transition matrix T:

T =


p11 p12 · · · p1M
p21 p22 · · · p2M

...
...

. . .
...

pM1 pM2 · · · pMM

 . (2)

Homogeneous Markov processes are Markov processes
where the transition probabilities are not time dependent
like the probabilities described in (1), (2) [17]. Non-
homogeneous Markov processes are, conversely, Markov
processes with a time dependent transition probabilities.

In this paper, a non-homogeneous Markov process with
three parking states was used. The parking states represented
the locations described in Section II-B. As a results, the
state space S became S = {Home, Work, Other}. The
time dependent transition matrix T (δ) = ((pij(δ)))M×M
replaced the homogeneous transition matrix in (2), where δ
represented the time of the transition. The variable δ varied
according to every minute in the day and wether the day
is a weekday or a weekend. In total, there were 1440 × 2
transition matrices (minutes × days). Each transition matrix
was estimated using the arrival statistics from the travel
survey in a similar method to what was previously described
in [13].

The decision to eliminate the driving states from the tran-
sition matrix was done for simplification reasons in [9], [10].
Similarly, in this paper the driving states were eliminated.
This entails that vehicles alternate between parking states
instantaneously in no driving time. In Sweden, the average
car trip takes 44 ± 2 minutes (95% confidence interval)
[18], which is shorter than the hourly meter used by the
grid operators in Sweden. As a result, the error due to the
elimination of the driving state, approximately 44 minutes
of extra time connected to the charger at the end of every
charging session, was assumed to have a small impact on
the results of the model.

B. Spatial distribution of the EVs
The simulation assumed that the initial condition for the

location of all vehicles in the beginning of the simulation was
home, i.e., all vehicles were initially parked at home. Then
for every vehicle, the Markov chain was used to determine
the location state S of the vehicle at each time step. In case
there was a change in the state S at time t, meaning Xt 6=
Xt−1, the vehicle was randomly assigned to a parking lot
in the city that belonged to the same location state S of the
current time step Xt. This location of the vehicle was not
changed until the vehicle changed its state S at a future time
step.

At every transition of states S, which in turn changed
locations in the city, the driving distance was randomly
sampled from the traveling distances between similar states
obtained from the travel survey [15].
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C. Load estimation

The driving distance led to an instantaneous discharge of
energy from the battery of the EV according to the AC
consumption rate η = 0.15 kWh/km in summer and 0.25
kWh/km in winter, as shown in [19] and by assuming AC/DC
conversion efficiency of 0.9 [20]. Winter months are defined
as the months from December to March. In this model,
there was no assumption regarding the battery capacity of
the EVs. Instead, all EVs were assumed to have enough
battery capacities to satisfy their planned trips, possibly in a
near future scenario. As a result, only energy depletion was
estimated, i.e., discharged energy of EVs were used instead
of the state of charge in this paper. The discharged energy
E (kWh) of the battery for vehicle n at time t is given by:

Ent =


Ent−1 + Cψ ×∆t if charging,
Ent−1 − η ×D if driving,
Ent−1 else,

(3)

where Cψ is the charging power (kW) of the station ψ, D is
the distance (km) driven by the vehicle during the duration
∆t [21]. The discharged energy Ent ≤ 0 kWh was equal
to zero when the EV had charged all the discharged energy
consumed for all the prior trips.

Finally, the charging load P (kW) of each station ψ at
time t is

Pψt = Cψ ×Nψ
t , (4)

where Nψ
t is the number of charging vehicles in station ψ

at time t.

IV. RESULTS

The results of the analysis of the data from the CSs is
presented in Section IV-A followed by the model results in
Section IV-B.

A. Charging stations’ data

The amount of energy consumed in the charging sessions
in all the CSs is presented in a histogram in Fig. 1(a).
The average energy consumed is 5 kWh, and 95% of the
charging sessions consumed less than 16.9 kWh. Only two
charging sessions consumed around 70 kWh. Estimating the
equivalent driving distance for the charged energy, depicted
in Fig. 1(b), showed that the average equivalent distance is
27.7 km. This distance is 1.7 km more than the average daily
driving distance in large cities, like Uppsala, in Sweden [18].
It is, nonetheless, not clear wether the EV drivers charge
once per day or once per multiple driving days. In case of
the former, it can be concluded that the EV drivers and ICEV
drivers have similar driving patterns, which is similar to the
conclusion of a recent study [22]. On the other hand, if EVs
charge once per multiple driving days, further studies using
GPS tracking of vehicles are needed to estimate the daily
driving distance.

The load of an average day of the stations is compared
in Fig. 2. First, the load profile varied among the stations.
Some stations have a more flat load profile, e.g., stations 1
and 4. The rest of the stations had one or multiple peaks in
their load of the average day. The flat load profile can be
attributed to a station that belongs to the “Other” location
state, which in turn has a load profile that correspond to the
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Fig. 1. Plot (a) presents a histogram of the amount of energy charged
per charging session. Plot (b) presents the equivalent driving distance
for the charged energy assuming the AC consumption rate η defined in
Section III-C.
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Fig. 2. The load of an average day of all CSs.

public charging profile. It can also be noted that the load of
each station varies with the occupancy of the station. Some
stations with high charging power and a large number of
charging ports are less frequently occupied compared with
other stations with low charging power and small number
of charging ports. More preferred stations have higher load
compared to the less preferred counterparts regardless of the
charging power of the ports in the CS. Further studies need
to explore the criteria that influence the occupancy of the
stations in Sweden.

B. Model results

The model was used to generate the load of the validated
CSs as shown in Fig. 3. Each station was simulated solely
in a spatial network. This choice was made to aleviate the
effect of the preference of the stations. In this simulation
each station was modelled as a mixture of load profiles.
The mixture of profiles for every station is presented in
Table II. The choice of the mixture of profiles was made
based on visual inspection of the modelled load and the
actual load, i.e., through comparing Fig. 3 and Fig. 2. We
can see that the model could represent the daily load of
stations 1 and 4. However, the model could not represent the
charging profile of Station 5, a station with only two charging
ports, using two charging profiles. This station could better
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Fig. 3. The load of CSs as generated by the model.

TABLE II
THE MIXTURES OF CHARGING PROFILES THAT BEST REPRESENTED

EACH STATION.

Station Number of ports

Workplace Residential Public

Station 1 – – 8
Station 2 1 7 2
Station 3 1 2 1
Station 4 – – 2
Station 5 – 1 1

be represented by three charging profiles. On the other hand,
stations, 2 and 3 had the lowest charging frequency and the
model could not reflect this low, almost zero during most of
the day, occupancy. In station 2, on average a charging event
takes place at once every 10 days for each charging port.
Each port in station 3 has on average one vehicle connected
roughly once every week.

In a larger spatial network with higher EV penetration the
differences in the charging frequency between station might
be small. Moreover, fewer CSs might have very low charging
frequency. This would result in a more predictable charging
load. In this case the spatial model developed here could
accurately reflect the load profiles.

V. CONCLUSION

This paper analysed the load measured from five CSs
in Uppsala, Sweden. The analysis revealed that the mean
recorded energy consumed during a charging session is 5
kWh. Moreover, it was estimated that the mean equivalent
driving distance per charging session is 27.7 km. Some
CSs had several daily peaks. These stations could better
be modelled as a mixture of different load profiles, i.e.,
these stations are occupied by different EVs during the
day periods. A clear difference in the charging frequency
between stations were noticed. This difference indicated an
uneven preference of EV owners towards CSs.

A spatial Markov chain model was developed in this paper.
The load from the CSs were used to validate the model.
The model was used to generate the load for each station.
Some stations were simulated as a mixture of different load
profiles. The results showed that the model could represent
the frequently occupied stations better than the seldom

occupied ones.
Further research could explore a method to incorporate

the user preferences in the spatial occupancy of the CSs.
Moreover, research is needed to estimate the criteria of
preference of EV owners.

The developed model could be further used to generate
EV charging data for grid studies as well as planning.
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