Research Campus Mobility2Grid: From Lab to Reality

Prof. Dr.-Ing. Dietmar Göhlich
Karoline Karoehs, M.Sc.

15th October 2018
Electric Vehicle Power System Integration Symposium
Stockholm
Mobility2Grid

- Public private partnership
- Located at EUREF-Campus, Berlin-Schöneberg
- Main objectives:
 - Integration of commercial and private electric vehicles in decentralized energy grids
 - Reference district for synergetic collaboration of electric mobility, power and heat supply grids
- Mobility2Grid delivers an essential contribution to make power, heat and mobility:
 - affordable in the long-run
 - safe and
 - completely based on renewable energies

© InnoZ
Mobility2Grid Association: Partners

Smart Grid Infrastructures
Interconnected E-Mobility
Bus and Commercial Transportation
Digital Spaces
Acceptance and Participation
Education and Knowledge Transfer
Operation and Commercialization

Mobility2Grid is a Public Private Partnership, including two universities, three research institutes, 28 companies and five more organizations.
Nexus of Energy and Nobility: Newly Arising Business Field

Engagement of potentially competing actors from both sectors required → Cooperation agreement → Actors need to cooperate → Project: clearly set rules for interaction and cooperation → Potential to impact the new field in their favour → Joint events, intense communication → Atmosphere of innovation and cooperation

Mobility2Grid innovation examples
Grid and Vehicles: Electric Bus Integration

- Proposing to integrate electric bus fleets in Virtual Power Plant operations
- Designing the integration of charging infrastructure as advantageous as possible → set-up of on-campus charging infrastructure that is integrated into the local smart grid (unidirectional in operation, bidirectional in 2019)
- Daily charging of regularly operating bus

Grid and Vehicles: Electric Bus Integration

- Bidirectional data exchange
 - varying control and regulation possibilities for different entities:
 - Electric Vehicle Supplier / Aggregator
 - Charging Point Operator
 - System Operator (SO)
 - Virtual Power Plant (VPP)

- Validation of charging strategies: opportunity charging / depot charging
- Time delay due to late bus arrival
- Relevant information for VPP operator, SO, local smart grid and power system services

Source: [3] Lauth et al. 2018
Grid and Vehicles – Outlook: Smart Grid Depots “Off Campus“
Grid and Vehicles: Car Sharing Fleet DSM Potential

- Study based on DB Connect car sharing fleet and its potential to contribute to Demand Side Management
 - Data of 1,200 (fossil-fueled) vehicles, 342,350 trips
 - Data parametrized
- Charging strategy scenarios:
 - Reference scenario,
 - Load reduction,
 - Load shifting,
 - Bidirectional charging
- Average required charging load: 5.5 kWh
- Load shifting and bidirectional charging are possible at almost any given time, varying potential depending on scenario and weekday

Source: [4] Noeren, Bürer, Stryi-Hipp 2018
What good is a technology when it is not being used?
Acceptance and Participation

Citizen participation:
- Constellation analysis, depicting constellations:
 - energy and mobility transitions (existing)
 - facilitating V2G application (desired)

- Focussed group discussion – additional acceptance-increasing factors:
 - Mobility guarantee
 - Economic incentives
 - Transparency
 - Vision

Corporate acceptance:
Interviews with six drivers of hybrid street sweepers:
- Generally positive evaluation
- Some limitations and skepticism
- Main challenge: applications planning

Source: [5] Albrecht & Böhm 2018
Acceptance and Participation

Constellation analysis, depicting desired V2G application

Source: [5] Albrecht & Böhm 2018
Business Models

- Counselling concept
- Charging infrastructure operation
- Self-sufficient energy supply for railway facilities
- Data and service platform
- Training concepts
Business Models

- No defined market or viable business model → economic challenges:
 - Newly arising business field
 - Late ROI for micro smart grids

- Legal challenges (Germany):
 - Different laws
 - Different definitions of end customers
 - Laws impede business model development for established actors

→ No single business model – it needs to be adapted to the facility
Outlook

Fleet Operators
4.6 million commercial passenger cars and 2.1 million trucks
Aggregation of fleet data → high prediction probability

Campuses
Ca. 400 scientific campus areas: potential model districts for smart grid concepts and integrated transportation solutions

Train stations, freight distribution centers, etc.
Ca. 2,000 buildings and sites in different categories
Decisive role of train stations when developing local smart grids

Residential districts
2000 housing companies with 2.2 million apartments
Increasing in housing communities with autonomous power supply
Thanks For Your Attention!

Your Questions?

Contact: Mobility2Grid e.V. | geschaeftsstelle@mobility2grid.de

