

2nd E-Mobility Power System Integration Symposium

15 October 2018; Stockholm, Sweden

Increased Utilization of residential PV Storage Systems through locally charged Battery Electric Vehicles

Dennis Huschenhöfer, Johannes Mieser, Jann Binder

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)

Motivation of the study

- 'First mover' charge their Battery Electric Vehicles (BEVs) at home
 - weak charging infrastructure
 - wish to use of own-generated renewable power
 - reduced cost of charging
- How much increase of the utilization of a residential PV storage system is caused by home charging?
- How much own consumption can be achieved?

Study design

- Study of charging a BEV with local produced solar power
- Parameters
 - 2 kinds of load profiles of the household
 - 2 PV system sizes
 - Energy content of the battery from 0 to 14 kWh
 - Daily driving distance according to 2 scenarios
 - 4 charging patterns
- Results:
 - Equivalent full battery cycles
 - own-consumed energy
- MATLAB simulation for one year with 15 min steps

Household load profiles

• Two extreme household load profiles, scaled to a energy demand of 4,000 kWh/a

BEV Probabilities of arrival times and driving distances

Daily vehicle use and arrival time is picked using the Monte Carlo Method

Simplified charging process

Charging duration depending on driving distance

Modelling of a BEV one-year load profile

Solar Power Production and Use

- South facing PV system located in Southern Germany with 1,000 kWh/kW $_{\rm p}$ (data from 2011)
- PV System sizes of 4 and 10 kWp
- Batteries with 0 to 14 kWh

Simulated Scenarios

	HH w/o BEV	BEV (Monte Carlo)	Commuter 6 pm	WE-charging Commuter	Two BEVs*
Electrical demand	4,000 kWh/a	4,000 kWh/a + 2,700 kWh/a	4,000 kWh/a + 3,450 kWh/a	4,000 kWh/a + 3,150 kWh/a	4,000 kWh/a + 4,150 kWh/a
BEVs	-	1	1	1	2
Daily Driving Distance	-	0 km - 300 km (≙ 13,500 km/a)	workday: 50 km weekend: 0 km - 300 km (≙ 17,250 km/a)	workday: 50 km weekend: 25km + 25km (≙ 15,750 km/a)	workday: 0 km - 40 km** (≙ 20,750 km/a)
Arrival Time	-	12 a.m 12 p.m.	workday: 6 p.m. weekend: 12 a.m 12 p.m.	weekend: 9 a.m. and 7 p.m.	workday: 11 a.m. – 3 p.m.** weekend: - **
Charging Pattern	_	daily after arrival	daily after arrival	on the weekend	daily after arrival

* 1st BEV like "Commuter 6 pm"

** Applies to the 2nd BEV

SW

Simulation of a household evening centered, 10 kWp PV-System & 3.7 kW CP

→ The utilization of large batteries is improved generally by the demand of the BEV but "sun-shine hour" charging decrease utilization

Comparison of results related to household profiles 10 kWp PV-System & 3.7 kW CP

- \rightarrow Higher utilization of the battery system at the evening centered profile
- \rightarrow Increase already for small batteries at the noon centered profile

Comparison of results related to household profiles 10 kWp PV-System & 3.7 kW CP

→ Also increase of utilization at noon centered profiles together with increasing own-consumption

Comparison of results related to <u>charging power</u>

evening centered, 10 kW_p PV-System

→ Only WE-charging with higher CP improves the utilization of all battery sizes but it has a bad effect on the own-consumption

Comparison of results related to <u>charging power</u>

evening centered, 4 kW_p PV-System

- \rightarrow No suitable power generation to supply the demand of the BEV
- \rightarrow Utilization increase only a little bit at large batteries

Summary

- Large PV systems are key to increasing own-consumption and the utilization of batteries:
 - goal: yearly PV generation > yearly consumption
- 50% of own-consumption can be achieved with such PV system (10 kWp)
- "sun-shine hour" charging leads to almost 50% own-consumption even without battery
- For evening charging to reach 50% of own-consumption batteries of > 10 kWh are needed
- Higher charging power reduces own-consumption for all battery sizes less for large batteries
- The additional demand for charging BEV increases the utilization of large batteries in particular for evening charging

// Energy with a future

// Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW)

// Dennis Huschenhöfer M.Sc. dennis.huschenhoefer@zsw-bw.de Thank you for your attention!

Stuttgart: Photovoltaics, Energy Policy and Energy Carriers, Central Division Finance, Human Resources & Legal

Widderstall: Solar Test Facility **UIm:** Electrochemical Energy Technologies, Main Building & eLaB

