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Abstract—This paper examines the impact of different 
penetration levels for electric vehicles (EVs) and heat pumps 
(HPs) on a large-scale German distribution network. The 
network comprises two HV/MV transformers supplying 150 
LV grids. Based on GIS data the entirety of the network down 
to each household has been modelled. Based on maximum 
coincidence factors for electric vehicle charging and heat pump 
operation, the share of the network experiencing overloading 
and undervoltage problems has been identified to show which 
levels of new consumers the network can safely accommodate 
under current planning guidelines. The method can be 
replicated on other distribution network and can provide 
distribution system operators with a useful tool to examine the 
readiness level of distribution networks to cope with an 
electrification of the mobility and heating sector. The results 
show that MV/LV transformers and voltage problems on the 
MV grid are the most prominent issues while voltage problems 
on the LV grids become only relevant at very high penetration 
levels. Overloading of lines occurs only in few cases, with MV 
lines somewhat more affected than LV lines. 

Keywords—Electric vehicles, heat pumps, hosting capacity, 
distribution network, overloading, voltage violations, coincidence 
factor, load flow 

I. ELECTRIC VEHICLES AND HEAT PUMPS IN DISTRIBUTION 

NETWORKS 

In order to shift away from fossil fuels towards cleaner 
sources of energy, there has been increasing effort on the 
electrification of passenger cars as well as the usage of heat 
pumps, that are powered by a future decarbonized power 
grid, e.g. relying on renewable energy sources such as solar 
and wind power. As a consequence, simulation studies 
regularly suggest scenarios with penetration rates of up to 
80 % and higher until 2050 or earlier, e.g. [1]. New electric 
vehicles (EVs) and heat pumps (HPs) will add to the existing 
load of the individual household. It is therefore imperative to 
review today’s distribution networks about their capability to 
accommodate envisioned EV and HP penetration levels. 

There have been a great number of investigations on low 
voltage (LV) distribution grids to assess the impact of the 
new consumers. With high charging power to recharge the 
EV quickly as well as high power input requirements for heat 
pumps, network assets risk being overloaded and voltage 
violations outside the stipulated 0.9 to 1.1 p.u. voltage band 
may occur. For example, [2] assesses a 70 % EV penetration 
limit for a single LV network in the UK based on real EV 
charging behavior data. [3] analyses the impact on LV/MV 
transformers and MV line loadings, using simplified grid 

topologies. [4] evaluates the impact of EV charging on 
HV/MV substations for the city of Porto, Portugal. 

Overall, only few assessments focus on a combined 
evaluation of the LV and MV grids. However, the 
simultaneous charging or heating behavior of large customer 
groups can impact voltages also in other parts of the network 
and therefore a build-up effect may become apparent. [5] 
evaluated such a network spanning across multiple voltage 
levels and comprising 5,000 nodes. However, the analysis 
focused on the impact of photovoltaic systems as the 
network was able to accommodate a 100 % EV penetration. 

This paper aims to extend on previous limitations, further 
enabled by increasing computational capabilities as well as 
improving data availability of distribution system operators 
(DSOs) regarding the mapping of distribution grids. Hence, 
such detailed analyses have become possible in recent years, 
allowing for the simulation of large distribution grids 
comprising several 10,000s up to 100,000s nodes. 

In this paper, a 25,000-noded network is simulated using 
a probabilistic approach. Random EV and HP distributions 
are introduced based on the simulated penetration level and 
maximum coincidence factors for concurrent EV charging 
and HP operation applied. Such coincidence factors can be 
derived from EV charging data (e.g. from the UK project My 
Electric Avenue [6]) or by probabilistic modelling based on 
driving statistics (e.g. [7]). By running load flow calculations 
on the network in DIgSILENT PowerFactory, overloading 
and undervoltage problems are identified. The simulations 
are repeated in a Monte-Carlo approach to account for 
uncertainty in the location of new EV and HP demand. 

The results indicate the hosting capacity of the network 
with regards to EV and HP uptake, i.e. showing which share 
of network assets experience overloading and undervoltage 
violations. This gives the DSO an assessment which 
penetration levels the network can safely accommodate and 
which network parts will be affected first and most severely. 
With the information at hand, planning guidelines can be 
improved and long-term plans composed to upgrade and 
extend the current distribution network. It further helps to 
understand the need for smart control of electric vehicles and 
heat pumps. 
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II. MODEL SETUP AND ASSUMPTIONS 

A. GIS-based distribution network import 

The 25,000-noded distribution network was provided by 
the German DSO EWR Netz GmbH and can be seen in Fig. 
1. It is supplied by two 110 kV/20 kV transformers with a 
capacity of 45 MVA each. However, the network has only a 
peak load of 14 MW as the HV/MV transformer have been 
upgraded to accommodate 66 MW of wind power and 
19 MWp of solar power, most of which is installed close to 
the HV/MV substation. Almost 10,000 customers, 
predominantly households, are supplied by a total of 
150 MV/LV transformers. The network is operated mostly 
radial and 90 % of the LV network as well as 80 % of the 
MV network is cabled. 

The network data has been automatically imported into 
DIgSILENT PowerFactory from the Geographic Information 
System (GIS) of EWR Netz GmbH. Major challenges 
represented locating and fixing errors in the GIS data, such 
as missing connections, erroneous cable types, etc. This 
enabled the display and calculation of the entire network, 
from the HV/MV transformers down to the 10,000 
households connected at 400 V level. 

On top of the existing customer loads, electric vehicles 
and heat pumps are added to the network. Assumptions on 
their technical characteristics as well as their locational 
distribution are described in the following. 

B. Technical characteristics of electric vehicles, heat 
pumps and existing customer loads 

Nowadays, home charging of EVs ranges typically from 
3.7 kW to 22 kW. Most users may opt to choose higher 
charging power than 3.7 kW for the convenience of shorter 
charging times, as charging overnight may occasionally not 
be sufficient to fully recharge the EV after long driving 

distances. A home charging station with 22 kW requires the 
approval of the DSO. Therefore, 11 kW has been chosen as 
the most likely charging power level applied in German 
distribution networks. Further, a power factor of 0.98 lagging 
has been assumed. 

The power input of the HP may also vary depending on 
the type of the HP and the dwelling’s heating requirements. 
It has been assumed to be 4.6 kW based on [1]. Further, a 
power factor of 0.8 lagging has been chosen. 

Non-household customers have been modelled with 
standard load profiles. Household customers were randomly 
assigned with one of 74 household profiles measured by 
HTW Berlin [8] and scaled to each respective yearly 
household demand. A random time in the evening between 5 
and 8 pm is chosen to determine the demand of regular 
appliances. At this time typically the peak load occurs and 
may in particular concur with EV peak charging demand. 

C. Electric vehicle and heat pump distribution 

The distribution of HPs is based on the household 
distribution, with each household having the same 
probability for the installation of a heat pump. The total 
number of heat pumps add up to the respective HP 
penetration that was modelled. A HP penetration of 100 % 
corresponds with every single household receiving one heat 
pump. 

The distribution of EVs is based on socio-economic 
analysis. A score from 1 to 10 is applied to each household to 
indicate the likelihood of an EV purchase by the respective 
household. The score is calculated on different household 
indicators such as housing situation, the residents’ age, their 
family situation, income levels, political orientation, existing 
solar rooftop plants, etc. A score of e.g. 5 has been assumed 
to have five times the likelihood compared to a score of 1. 
The EV owners are selected based on this likelihood 

 
Fig. 1: Display of the 25,000-noded distribution network during a situation of high electric vehicle and heat pump penetration 
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distribution. A small likelihood is added that a second or 
even third EV is charging at the same household. The total 
number of EVs add up to the EV penetration that was 
modelled. An EV penetration of 100 % corresponds with all 
cars being electric. With a car ownership of 0.52 cars per 
person, there are estimated to be 12,420 cars in the area. 

During each simulation run, the distribution of EVs and 
HPs is reshuffled. Through this Monte-Carlo approach, also 
worst-case situations with unfavorable EV and HP 
distributions are reflected. 

D. Simultaneous/concurrent charging and heating 

Depending on the time of return, different people will 
plug their EV in for charging at different times. Similarly, 
not all heat pumps will typically be switched on at the same 
time. This relationship can be expressed through the 
coincidence factor, seen in Fig. 2. It is based on [1] and [9] 
and determined by stochastic simulation of driving behavior 
and thermal load profiles. It expresses the maximum 
concurrence throughout a year with a 95 % confidence 
interval. This means, that the maximum coincidence factor 
should only occur in one of 20 years. This is deemed as a 
satisfactory confidence level for DSOs. Charging data in the 
future are important to validate such coincidence factors. 

As can be seen, if only few EVs or HPs are considered, a 
high concurrence applies. However, with increasing number 
of units, the coincidence factor decreases, as concurrent 
charging or HP operation becomes less likely. Furthermore, 
the HP coincidence factor is higher than the EV coincidence 
factor, as HP operation is mainly determined by cold spells 
that impact all households. The EV charging behavior of 
users, on the other hand, is more random and depends on 
factors such as return times and travel distances, therefore 
showing much lower concurrences. 

III. MODELLING APPROACH 

A. Separate consideration of different network levels 

While the coincidence factor is a simple and convenient 
tool to quickly assess the impact of a number of EVs or HPs 
on a network segment, it cannot be used to examine the 
impact across multiple voltage levels. 

For example, to assess the impact of EVs on a single LV 
feeder, a high coincidence factor has to be assumed that 
corresponds with the low number of EV owners in this grid 
segment. On the other hand, if the impact of EVs on the 
HV/MV transformer is evaluated, a low coincidence factor 
must be assumed as only a small percentage of EVs will 
charge at the same time if the number of EVs is in the 
hundreds. 

Therefore, the hosting capacity is performed on four 
different levels: 

 LV feeders 

 MV/LV transformer 

 MV feeders 

 HV/MV transformer 

Each level is simulated with the maximum EV and HP 
coincidence factor and subsequently assessed regarding any 

undervoltage or overloading violations on the respective 
evaluation level. 

 
Fig. 2: Maximum coincidence factor for different numbers of electric 
vehicles and heat pumps, based on [1] and [9] 

B. Applied thresholds for overloading and voltage 
violations 

During each separate simulation of network levels with 
the applied maximum coincidence factors, the share of 
network assets experiencing overloading or voltage 
violations is noted. Table 1 gives the thresholds, above which 
a undervoltage or overloading violation is noted. They are in 
line with the planning guidelines of EWR Netz GmbH. 

In the MV grid and above, network assets are typically 
not loaded above 60 % to maintain n-1 redundancy. This 
means, in the case of a contingency, assets are allowed to be 
overloaded up to 120 % for a short time. In the LV grid the 
n-1 criterion is usually not applied. 

Further, according to standard EN 50160 the voltage in 
distribution networks should be kept within 0.9 to 1.1 p.u. A 
common practice is to classify a maximum voltage drop and 
rise for each respective network level. Hence, through load 
flow calculation it is checked which MV nodes experience 
voltage drops larger than 5 % with reference to the MV 
busbar of the HV/MV transformer. Similarly, any LV nodes 
are checked if they exhibit voltage drops larger than 5 % 

Overloading 

HV/MV 
transformers > 60 % loading 

MV lines > 60 % loading 

MV/LV 
transformers > 100 % loading 

LV lines > 100 % loading 

Undervoltage 
MV grid > 5 % voltage drop 

LV grid > 5 % voltage drop 

TABLE 1: APPLIED PLANNING THRESHOLDS FOR VOLTAGE AND LOADING 

VIOLATIONS ACCORDING TO DSO GUIDELINES 
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with reference to the LV busbar of the MV/LV transformer. 

IV. RESULTS 

Fig. 3 shows the results for different EV and HP 
penetration levels from 0 % to 100 %. Some results have 
been omitted due to convergence problems of the load flow 
algorithm with too high penetration levels. 

The heat maps show the share of elements that exhibit a 
voltage or overloading violation. For example, a 100 % EV 
penetration without heat pumps would result in: 

 Voltage drops greater than 5 % on 5 % of LV nodes 
and on 13 % of MV nodes; 

 No overloading problems on LV lines but on 6 % of 
MV lines; 

 The overloading of 40 % of all MV/LV 
transformers; 

 No overloading of the two HV/MV transformers 

As can be seen, the MV/LV transformers are the most 
severely impacted by increasing EV and HP penetrations, 
with most of them getting overloaded at higher penetration 
levels. The first transformers are already overloaded at low 
EV and HP penetration levels, with e.g. 12 % of MV/LV 
transformers overloaded at 20 % EV combined with 20 % 
HP penetration. 

The MV grid also shows high voltage drops, resulting in 
large parts of the network facing voltage drops higher than 
5 %. Overloading of MV lines occurs also to a smaller 

degree as the 60 % loading threshold is surpassed. 

Voltage violations occur also to some degree on LV 
grids. However, it seems to be relatively robust against high 
penetration of EVs and HPs, with e.g. only 20 % of nodes 
experiencing voltage drops greater than 5 % in the 100 % EV 
+ 40 % HP case. Lastly, almost no overloading above 100 % 
occurs on LV lines. 

Furthermore, it can be seen that on the LV level the 
impact of EVs is similar to the impact of HPs. However, at 
the MV level, HPs pose bigger problems compared to EVs. 
For example, a 100 % HP penetration leads to large voltage 
drops in 47 % of MV lines, while a 100 % EV penetration 
only leads to large voltage drops in 13 % of MV lines. 

While the EV charging power (with 11 kW) is more than 
double the power input of the heat pumps (with 4.6 kW), the 
coincidence factor is much lower for EVs. This is more 
pronounced for large numbers of EVs and HPs, where the 
coincidence factor of HPs is about 4 to 5 times the one of 
EVs. 

V. DISCUSSION 

The greatest impacts of EVs and HPs in this particular 
distribution network are on MV/LV transformers as well as 
on the voltage of the MV grid. Improved voltage control 
methods could further extend the current guidelines on 
voltage drops per voltage level, reducing the need for 
reinforcements due to voltage constraints. However, to 
prohibit the overloading of MV/LV transformers, advanced 
control concepts for electric vehicles and heat pumps are 

 
Fig. 3:  Share of network assets experiencing overloading or voltage violations for different penetration levels of electric vehicles and heat pumps. 

LV_U = Voltage violations in the LV grid; LV_I = Overloading in the LV grid; MV/LV = Overloading of MV/LV transformers; 
MV_U = Voltage violations in the MV grid; MV_I = Overloading in the MV grid; HV/MV = Overloading of HV/MV transformers 
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necessary to alleviate the need for grid reinforcements (e.g. 
[10]). 

Further, a number of MV lines were affected by loadings 
above 60 %, resulting in overloading violations according to 
the specified thresholds. The 60 % threshold due to n-1 
redundancy may however be subject may be subject to future 
discussions, as the power output of controllable loads such as 
EVs and HPs could be limited by the DSO during n-1 events. 
This would reduce the oversizing of MV assets to ensure n-1 
security. 

The LV grids, on the other hand, are only impacted at 
very high EV and HP penetration levels that are not expected 
within the next decade. Hence, necessary investment into LV 
grid extensions would be limited to accommodate such high 
EV and HP penetration levels. 

Lastly, as the HV/MV transformers are largely oversized 
to accommodate large wind power plants close to the 
substation, no overloading is occurring here. However, in 
other networks this may often not be the case. 

Even though this distribution network is not 
representative for Germany, the method is replicable and can 
be used by distribution system operators to evaluate the 
readiness levels of their distribution network for EV and HP 
uptake. 

It should finally be noted that for cases of concurrent EV 
and HP penetration, the results are a worst-case estimation as 
EV and HP peak demand will in most times not occur at the 
same time. A more thorough analysis with combined EV/HP 
coincidence factors based on stochastic simulation would be 
required to resolve this. 

VI. CONCLUSIONS 

This paper shows the impact of electric vehicles and heat 
pumps on a large German distribution network with 25,000 
nodes and a peak load of 14 MW. It evaluates the impact 
across multiple voltage levels, from the single household to 
the two HV/MV transformers supplying the network. 

Severe overloading of MV/LV transformers are expected, 
with the first overloaded transformers being encountered at 
EV and HP penetration levels above 20 %. Further, large 
voltage drops on the MV lines are expected that may be 
critical for grid operation. Voltage problems in the LV grids 
are less severe, with major problems only arising at a 
combination of both high EV and HP penetrations, and 
overloading in LV grids is negligible. 

The novelty of the paper lies in assessing distribution 
networks on a large scale, with simple methods such as 

maximum coincidence factors. Such methods give 
distribution system operators the tools to evaluate the 
readiness level of their distribution network to accommodate 
high EV and HP penetration levels. 

This in turn improves their planning principles and helps 
in their decision-making to appropriately investigate 
mitigation measures such as smart EV charging and HP 
control, improved voltage control concepts, and increased 
distribution grid monitoring. 

Uncertainties lie in particular in the determination of the 
maximum coincidence factors. The curves used in this paper 
(see Fig. 2) have been obtained through rigorous stochastic 
simulations based on driving statistics and thermal heat 
demand, however, they need to be verified through actual 
EV charging and HP operational data in the future. 
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