Electric Vehicle and Heat Pump Hosting Capacity Assessment for a German 25,000-noded Distribution Network

14. October 2019

Leonard Hülsmann, T. Schlößer, E. Tröster, M. Koch, U. Ohl

I.huelsmann@energynautics.com

Energynautics More than just an organizer

Our Services

- Grid Studies
- Smart Grid Development
- Power Generating Unit Modelling
- Grid Code Development

- Grid Optimization Software ENAplan
- Measurement Campaigns
- Capacity Building
- Conference Planning

energy**nautics** international Work Experience

Motivation

Model a large-scale distribution network up to the last household

- Probabilistic analysis of electric vehicle (EV) and heat pump (HP) impact
- > Evaluation of overloading and undervoltage problems for all network levels
- → Readiness level of the distribution grid regarding EV/HP growth

Detailed modelling

00

[12.03.2019 17:48:29] Newton-Raphson conv [12.03.2019 17:48:30] Load flow calculation

- 25 000 nodes, 10 000 customers
- Peak load of 14 MW

EV and HP coincidence factors

Idea: <u>Simple strategies</u> for distribution system operators to estimate the impact of electric vehicles and heat pumps

→ Coincidence factors based on probabilistic modelling or actual EV/HP data if available

If 30 EV owners → Simultaneous charging of up to 10 EVs If 30 HP owners → Simultaneous operation of about 27 HPs

dena Study Integrated Energy Transition / dena-Leitstudie Integrierte Energiewende (p.145) 5

Technical assumptions

Electric vehicles (EVs):

- 11 kW charging power
- cosphi = 0.98 lagging

Heat pumps (HPs):

- 4.6 kW_{el} power input
- cosphi = 0.8 lagging

- Random distribution of EVs on households, relative on EV score
- EV score is based on socio-economic characteristics of households

Evaluation across multiple voltage levels (1)

Evaluation across multiple voltage levels (2)

For the different voltage levels, different coincidence factors need to be taken into account:

- Single LV feeder → Few # of units → High simultaneity for worst-case scenario
- Entire MV grid → High # of units → Low simultaneity for worst-case scenario

Results – Example

Households with undervoltage problems in one of the LV grids

Undervoltage visualization for 100% EV / 0% HP penetration

Results – Summary

				EV per	netratior	ı								
etration HP penetration	LV_U	0%	20%	40%	60%	80%	100%	MV_U	0%	20%	40%	60%	80%	100%
	0%	0%	0%	0%	1%	3%	5%	0%	0%	0%	0%	0%	1%	13%
tio	20%	0%	0%	2%	5%	8%	13%	20%	0%	0%	1%	8%	23%	31%
etra	40%	0%	2%	6%	10%	15%	20%	40%	1%	5%	19%	28%	39%	44%
ene	60%	1%	7%	12%	17%			60%	17%	29%	37%	44%		
ation HP pen	80%	4%	13%	19%				80%	39%	43%	47%			
-↓	100%	9%	20%					100%	47%	50%				
•														
	LV_I	0%	20%	40%	60%	80%	100%	MV_I	0%	20%	40%	60%	80%	100%
_	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	2%	6%
atio	20%	0%	0%	0%	0%	0%	1%	20%	0%	0%	1%	5%	10%	15%
etra	40%	0%	0%	0%	1%	1%	3%	40%	1%	3%	8%	13%	17%	19%
en o	60%	0%	0%	1%	2%			60%	7%	13%	16%	18%		
H pe	80%	0%	1%	2%				80%	16%	18%	19%			
⁺↓	100%	1%	2%					100%	19%	22%				
	MV/LV	0%	20%	40%	60%	80%	100%	HV/MV	0%	20%	40%	60%	80%	100%
enetration	0%	0%	1%	5%	15%	26%	40%	0%	0%	0%	0%	0%	0%	0%
	20%	1%	12%	23%	33%	44%	50%	20%	0%	0%	0%	0%	0%	0%
	40%	8%	30%	39%	48%	55%	62%	40%	0%	0%	0%	0%	0%	0%
	60%	25%	45%	53%	61%			60%	0%	0%	0%	0%		
Ър	80%	40%	56%	65%				80%	0%	0%	0%			
±↓	100%	54%	65%					100%	0%	0%				

 $LV_U = Voltage violations in the LV grid; LV_I = Overloading in the LV grid; MV/LV = Overloading of MV/LV transformers; MV_U = Voltage violations in the MV grid; MV_I = Overloading in the MV grid; HV/MV = Overloading of HV/MV transformers$

Results – Impact of coincidence factor

EV penetration								EV penetration							
ation	LV_U	0% 20% 40%		60%	80%	100%		MV_U	0%	20%	40%	60%	80%	100%	
	0%	0%	0%	0%	1%	3%	5%		0%	0%	0%	0%	0%	1%	13%
	20%	0%	0%	2%	5%	8%	13%	1	20%	0%	0%	1%	8%	23%	31%
etra	40%	0%	2%	6%	10%	15%	20%		40%	1%	5%	19%	28%	39%	44%
pen	60%	1%	7%	12%	17%				60%	17%	29%	37%	44%		
₽	80%	4%	13%	19%					80%	39%	43%	47%			
	100%	9%	20%						100%	47%	50%				
						5 EVs			5 HPs		500 EVs			500 HPs	
	Coincidence factor					70%			100%		15%			76%	
	Power output					11 kW			4.6 kW		11 kW			4.6 kW	
	Combined power output					39 kW			23 kW		814 kW		/	1737 kW	
120 % 80 60 40 20 0	Electric vehicles Heat pumps					× 1			1.7		×C		x 0.	<u>)</u> .5	

11

Conclusions

- Possible to model large-scale distribution networks of up to multiple 100,000 nodes
- Simplified methods to analyze the readiness level of distribution grids towards electric vehicles and heat pumps
- Visual inspection of vulnerable grid sections
- Evaluation across multiple voltage levels to determine both small- and large-scale impact

- The analyzed network showed that problems would arise mainly in MV/LV transformers and MV grid. Less critical for LV grid.
- Network is not representative for Germany
 But method easily applicable to other distribution networks

Discussion

- Biggest challenge: Accurate GIS data with few errors on connections, line types, etc.
- Advanced voltage control concepts with increased distribution grid monitoring can expand current voltage drop limitations of 5 %
- n-1 redundancy may be subject to discussion as the power output of controllable loads could be limited during n-1 events → reduced oversizing of MV assets

Thank you for your attention!

Leonard Hülsmann

Energynautics – Renewable Energy Engineer

+49 6151 78581 06 I.huelsmann@energynautics.com

