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Abstract— Distribution utilities are already facing 
problems due to the integration of distributed generation (DG) 
and the foreseen large-scale deployment of electric vehicles 
(EVs) could aggravate the situation even further. Similarly, a 
large EVs share is a concern for transmission system operators 
as it may substantially increase the network peak power and 
power-flow fluctuations. The main aim of this paper is to 
provide a coherent probabilistic methodology for assessing the 
impact of EVs integration on distribution and transmission 
networks, including low-voltage (LV), medium-voltage (MV) 
and high-voltage (HV) network analysis. The simulations are 
carried out by means of sequential Monte-Carlo simulations, 
considering the variability of consumption and generation at 
distribution level and the probabilistic nature of EV charging, 
highly dependent on users’ habits and required comfort. This 
approach enables to address the high variability of power flows 
in power networks and can form the basis for network 
planning and for the development of measures to reduce 
system cost due to EVs integration. 

Keywords— Electric vehicles integration, probabilistic 
distribution-networks planning, sequential Monte Carlo 
simulations, unbalanced power flow 

I. INTRODUCTION 

The high share of distributed generation (DG) has already 
an impact on distribution and transmission network 
operation. At transmission level, the variability of power 
flows is a concern and at distribution level, high voltages are 
usually the first problem. The foreseen electrification of the 
transportation sector could aggravate the situation even 
further [1] – [4]. Namely, electric vehicles (EVs) will 
considerably increase power flows and their fluctuation. 
Besides, the coincidence of uncontrolled EV consumption 
and renewables generation is relatively low [5] and the 
flexibility of EV charging is limited by users’ comfort and 
their required driving range. 

For efficient planning of distribution and transmission 
networks, and thus for avoiding pricy network 
reinforcements, a methodology for the evaluation of EV 
impact on network operation is needed. Such methodology 
must consider the main characteristics EVs consumption 
(high variability of charging patterns) and the properties of 
distribution networks operation, e.g. high variability of load 
consumption and DG generation, unbalanced power flows 
and uncertainty of operating conditions in the future (e.g. 
location of new DG). This approach can aid utilities to gain 
an insight into the impact of EVs on networks in order to be 
able to identify the most problematic issues (voltage levels, 
overloading…) when a large number of EVs is introduced. 

Without a clear picture on the impact of EVs, their 
integration may turn out to be pricy due to the required 
reinforcement of the electricity network infrastructure. 

Several papers have already addressed many aspects of 
EV integration. However, many of them tackle only some of 
the important factors affecting the influence of EVs. In [6] 
and [7] the authors studied the important issue of dynamic 
spatial-temporal features of the energy demand focusing on 
the charging need when facing human factors in real 
situations, but did not address the impact on distribution 
network. A spatial-temporal approach was used also in [8], 
where the impact of EV integration was studied for a MV 
urban network. The authors presented the results in a 
probabilistic manner. LV networks, as a probable bottleneck 
for EV integration, were not observed. Similarly, LV 
networks were not modelled in detail in [9] where the IEEE 
34-bus test feeder was used. In a recent study [10], the 
authors proposed a new optimal planning method and also 
focused on the MV level only. In [11], the authors studied 
the influence of EV on a residential LV network and 
analysed network reconfiguration optimisation. However, 
they did not take into account single-phase connection and 
unbalance as an important factor. In [12] EVs were used as a 
mean to improve voltage unbalance in a LV network. The 
study did not use a stochastic approach to network 
simulations, which may provide misleading results due to the 
high variability in LV networks. The high variability in 
distribution network operation was also not tackled in 
references [13 - 16], where the authors focus on charging 
optimisation techniques in order to offer support to LV 
network operation. 

The main aim of this paper is to provide a coherent 
methodology for assessing the impact of EVs integration on 
a network, including HV, MV and LV network analysis. In 
terms of distribution network modelling, unbalanced 
operation is assumed, allowing for the study of single-phase 
charging. Load and DG probabilistic load-profiles are 
obtained from measured data and EV charging-load 
diagrams are constructed based on start-of-journey and 
travel-distance statistics. A reference MV and LV 
distribution network is used for simulations and the actual 
Slovenian transmission grid is used for transmission level 
simulations. The obtained results at distribution level are 
probability functions of transformer loading, feeder loading 
and network voltages. The results at transmission level are 
given as an increase in feeders’ peak-power and an increase 
of the loss-of-load expectation (LOLE). The methodology 
can form the basis for network planning and for the 
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Fig. 1. Probability distribution of daily travel distances [17]. 

Fig. 2. Flowchart for the definition of a charging point (i.e. network node)
load diagram. 

development of measures to reduce system cost due to EVs 
integration. 

II. EV CHARGING-LOAD DEFINITION 

EV charging load plays an important role when assessing 
the impact of EV integration on network operation [6]. The 
shape of EV load diagrams depends on the EV itself (battery 
size, charging power…) and is strongly influenced by user 
behaviour. The main parameters used for the definition of 
EV charging load diagrams are the distance travelled within 
a day, charging start times, charging power, battery capacity 
and the required battery state-of-charge (SOC). In terms of 
user behaviour, we assumed that EV usage in the future will 
not change significantly compared to the nowadays use of 
conventional vehicles.  

The travel distance within a day is an important input 
parameter as it determines the needed daily energy in order 
to maintain the required SOC of batteries. Figure 1 shows the 
diagram of the distribution of the daily travel distance for 
Denmark [17], which was used for calculations.  

The second parameter, which directly affects the shape of 
the EV load, is the distribution of the beginnings of daily 
trips. The data set was taken from the same source [17]. The 
beginnings and the duration of trips help to estimate the time 
when the vehicle is parked and available for charging. 

A. Reference charging scenarios 

The charging scenarios reflect EV-user behaviour and the 
daily travel distance. According to the data on the daily trips, 
we have defined three basic charging scenarios: 

 Scenario A (ScA): once per day charging in the 
afternoon (after work). 

 Scenario B (ScA): twice per day charging, in the 
morning (ScBm) and in the afternoon (ScBa). 

 Scenario C (ScC): once per day charging in the lower 
night tariff. 

Scenario A is the most basic case, which assumes that 
users start charging EVs when they arrive home after work. 
Charging twice per day in Scenario B is associated with 
longer daily travel distances, requiring charging at two 
locations. In Scenario C, the charging time is adapted to the 
tariff system. Namely, it is reasonable to expect that some 
users will charge EVs during the lower night-time tariff. The 
basic data (mean value and standard deviation) of the 
charging scenarios are given in Table I. Within simulations, 
the individual EV will follow one of the defined charging 
scenarios. The length of charging is defined based on the 

daily travelled distance (consumed energy) and the 
requirement that all EVs have to be fully charged on the next 
day in the morning. 

TABLE I.  BEGINNING OF CHARGING FOR DIFFERENT CHARGING 
SCENARIOS. 

 Charging scenario 
Mean 
hour 

Standard 
deviation 

ScA Once per day charging in the 
afternoon 

16:00 2 h 

ScB Twice per day charging, in the 
morning (ScBm) and in the 
afternoon (ScBa) 

10:00 
16:00 

3 h 
2 h 

ScC Once per day charging in the 
lower night tariff 

22:30 0.5 h 

TABLE II.  DEFINITION OF SIMULATION CASES AS A MIX OF DIFFERENT 
CHARGING SCENARIOS. 

 
C1 (mostly afternoon 
charging) 

C2 (mostly night charging) 

Charging 
point 

household business/public household business/public 

ScA 50 % 10 % 5 % 5 % 
ScBm 
ScBa 

/ 
10 % 

50 % 
/ 

/ 
5 % 

5 % 
/ 

ScC 40 % 40 % 90 % 90 % 
Total 100 % 100 % 100 % 100 % 

B. Mapping the EV charging load to the distribution 
network 

In order to be able to assess the in influence of EVs on 
the distribution network, we have to map the EVs load to the 
network. This means that the EV charging load has to be 
assigned to specific network nodes. For this purpose, we 
have defined two distinct types of charging points in the 
network: a household charging point (at these points EVs are 
charged according to scenarios ScA, ScBa and ScC) and a 
business/public charging point (EVs are charged according 
to scenarios ScA, ScBm and ScC). Based on these 
assumptions, two simulation cases are defined (C1 and C2), 
which differ in terms of charging scenarios composition. 
Table II summarizes these cases. 

Case C1 foresees that 50 % of the users, which are 
connected to household charging points, will charge after 
work in the afternoon (according to ScA). Next, 40 % of EVs 
will be charged during the lower night tariff (according to 
ScC), and a smaller part (10 %) will be charged according to 
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Fig. 3. Flowchart of the sequential Monte-Carlo algorithm basic steps. 

scenario ScBa. Business/public charging stations are mostly 
used in the morning (60 %) and in the evening (40 %). Case 
C2 assumes that the majority of users (90 %) will charge 
during the lower night tariff and that the others will be 
uniformly distributed between ScA and ScBa. Figure 2 
shows the flowchart for the definition of a charging point 
(i.e. network node) load diagram. Based on the type of 
charging point (household or business), simulations cases 
(C1 or C2), the distribution of the beginnings of trips and 
statistical data on daily mileage distribution, the consumption 
diagram of a particular grid charging point is calculated. 

C. Mapping the EV charging load to the transmission 
network 

Mapping of EV charging load to the transmission 
network depends on the topology of distribution networks 
and their connections to the transmission network via 
transformers. In this manner, the mapping is performed 
indirectly and presents the upgrade of the mapping of EVs to 
the distribution network. This procedure allocates additional 
power required for the EV charging among the nodes on the 
transmission level, i.e. the coupling points between 
transmission and distribution. The power shares are added to 
the existing nodal powers, which is followed by the power 
flow calculation. 

III. SIMULATION METHODOLOGY  

In this section, the simulation methodology for the 
distribution and transmission networks is described. 

A. Distribution network simulations 

The operation of distribution networks, and especially 
LV networks, is highly variable. Therefore, the Monte Carlo 
based approach offers a viable option for the analysis of such 
networks and can be used to describe different phenomena 
with an expected probability of occurrence [18]. 

1) Load and DG modelling 
For load consumption modelling, measured 15-minute 

LV-load diagrams were used as a source for sampling. The 
database consists of thousands of yearly measurements from 
which probability density functions (PDF) are constructed. 
Loads are randomly sampled from these distributions. By 
using real load diagrams, network operation can be 
represented more accurately than just by using simultaneity 
factors. The aggregated load diagram varies by the type of 
user (commercial or household). The loads operate at a 
constant power factor of cosφ = 0.95. For DG modelling, 
measured 15-minute PV-generation diagrams were used as a 
source for sampling. The PDF, which fits best to the input 
data, is the Weibull distribution, and is chosen by the 
Bayesian criterion. It has to be noted, that the models of the 
load and PV have different values of parameters for each 15-
minute interval during the day, and change according to 
weekday and season. 

2) Calculation of the number of EVs for each MV/LV 
substation 

For the analysed network, the number of EVs is defined 
based on the number of households in the network, the 
average number of EVs per households in the country and 
the average contribution of households to transformer peak 
power.  

3) Sequential Monte-Carlo algorithm 
The simulation methodology is based on the sequential 

Monte Carlo algorithm, i.e. Monte Carlo simulations using 
simple random and time-sequential sampling. The statistical 
variables are sampled at a random day at a particular time 
(i.e. 15-minute interval in the day). The main statistical 
variables, used for load-flow calculations, are: 

 

 Daily-travel distances 

 Time of the beginning of charging 

 Consumers’ load and DG generation 

The time of beginning of charging is the parameter with 
the highest uncertainty as it is based on the assumptions of 
EV users’ behaviour. 

Figure 3 provides a diagram of the sequential Monte-
Carlo algorithm basic steps. One simulation run comprises 
calculations for a 24-hour period in 15-minute intervals. A 
sufficient number of Monte-Carlo simulations can be 
determined by the confidence interval, where 90 % is usually 
used. This is the interval where the searched parameter lies in 
with a 90 % probability. 

B. Transmission network simulations 

In this research, the following calculations are performed 
in order to assess the impact of EVs on the transmission 
network: 

 Power-flow calculation in order to identify critical 
transmission lines in terms of possible overloading; 

 Calculation of LOLE for assessing the reliability level 
of the network. 

Power-flow calculation is performed by applying the 
Newton-Raphson method (fast decoupled method) resulting 
in active and reactive line power flows and nodal voltages. If 
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reactive power and voltages are not observed, the DC 
method can be used in order to speed-up calculation. 

Mathematical formulation of LOLE can be found in [19]. 
The methodology requires input data regarding power plants: 
installed power and availability, thus actual data for the 
Slovenian power plants are considered. In addition, the 
hourly total load of the transmission network that includes 
the EV loading is required for the calculation. Therefore, for 
each simulated scenario the LOLE index is calculated 
respectively. 

The final step prior to the calculation is to scale up the 
nodal generation and loading according to the long-term load 
forecast and investment plans for the year of interest. This 
research does not address the forecasting approach and the 
expected total system consumption is taken from the national 
long-term projections. This consumption is proportionally 
allocated among the system nodes according to the current 
nodal powers. 

IV. CASE STUDY 

For the case studies, we used the data from Slovenian 
power networks and measured diagrams of users and DG. 
For distribution networks, year 2017 was taken as a base case 
for the comparison of the future scenarios in the year 2030. 
For the transmission network, the future scenarios results 
were calculated for the year 2035. In 2017, the influence of 
EVs on network operation is negligible. The number of EVs 
for Slovenia in 2030 and 2035 is based on the predictions 
according to the slow, moderate and fast scenarios. We have 
assumed the fast growth scenarios, where 180.000 EVs are 
foreseen in 2030 and 300.000 in 2035. Both, battery EVs and 
hybrids are considered. The total number of cars was 
1,097,000 in the beginning of 2017 and is not expected to 
rise significantly due the already high number of cars per 
household, i.e. 1.31. The number of households in Slovenia 
is approximately 820,000. 

For load-flow simulations DIgSILENT PowerFactory 
was used. For realistic representation of the real network 
circumstances, some assumptions have been taken into 
account. In case of twice-per-day charging it is assumed that 
the EVs will not charge within the same HV/MV substation 
twice. Two types of distribution systems are modelled, i.e. 
rural, where the majority of consumption are households, and 
urban, which supplies also a large share of commercial 
consumers (buildings). Depending on the type of consumers 
the shares of household and public/commercial charging 
points is defined. 

The following EV characteristics were used: battery 
capacity of 24 kWh, average consumption 0.2 kWh/km, 
charging power 3.6 kW for single-phase and 7 kW for three-
phase charging. Unbalance was taken into account (three-
phase simulations). According to the relatively short daily-
travel distances, a larger battery would not significantly 
affect the results and a much smaller battery is not expected 
for battery EVs in the future. 

A. Representative distribution network model 

A representative distribution network was built based on 
data from distribution network operators. The main aim of 
the representative grid is to represent adequately different 
distribution networks. The representative grid covers the area 
of one HV/MV substation. At the MV level, two feeders are 

modelled in detail, i.e. an urban feeder and a rural feeder. An 
equivalent load models the rest of the substation load and 
generation. At each of the two modelled feeders, one LV 
network is modelled in full detail, i.e. one urban LV network 
connected to the urban MV feeder and one rural LV network 
connected to the rural MV feeder. MV/LV transformers and 
equivalent loads represent all other LV networks. Each 
network type has its own characteristics. For example, in the 
rural area, the feeders are longer and the load density is 
lower as opposed to the urban grid, where shorter feeders 
with higher load density are used. 

1) Simulated network description – MV network 
The representative MV network represents an urban and 

a rural feeder, taking into account the typical properties of 
these two types of distribution networks in Slovenia. A 31.5 
MVA, 110/20 kV transformer supplies the HV/MV 
substation. A peak loading of 20 MVA occurs in January. 
The control of the on-load tap changer (OLTC) is classic, 
based on the secondary voltage, where the reference voltage 
is set to 1.03 (±0.01) p.u. The feeder parameters used for the 
MV network are given in Table III, where the nominal 
voltage Un, the nominal (max) current In, series resistance r, 
series reactance x and susceptance b are given. The length of 
the rural feeder is 15 km, which represents a relatively long 
feeder. At the beginning, there are five 400 kVA 
transformers, followed by eight 250 kVA transformers and 
two 160 kVA transformers at the end of feeder. The length of 
the urban feeder is 7 km, where all MV/LV transformers are 
400 kVA. The rural feeder supplies mainly households and 
the urban feeder supplies a mix of commercial (30% of all 
consumption) and household consumers.  

The maximal voltage drop that occurs on the MV rural 
feeder is round 2.7 % and the power consumption is 3 MVA 
(29 % of maximum line loading), which represent a realistic 
voltage drop and loading. Maximal voltage drop on the MV 
urban feeder is 0.4 % and the power consumption is 1.8 
MVA (16 % loading). The equivalent MV load is also 
sampled from the measurements database and has a peak 
power consumption of 10.5 MVA.  

2) Simulated network description – LV networks 
Two LV networks were modelled in detail, one urban and 

one rural. Both networks present a representative model with 
realistic consumption, voltage drops and length of lines as in 
actual networks in Slovenia. The rural LV network supplies 
70 consumers through a 20/0.4 kV 160 kVA transformer 
with a peak consumption of 120 kVA. The network consists 
of four overhead lines. Maximal voltage drop is 7 % (10 % is 
allowed in Slovenia). The main lines have a cross-section of 
70 mm2 (total length 3 km), while laterals are 35 mm2 (total 
length 2 km) or 16 mm2 (total length 1.5 km).  

TABLE III.  MV-NETWORK FEEDER PARAMETERS. 

Rural feeder Urban feeder 
Al/Fe 70/12 
length= 15 km 
Un = 20 kV 
In = 290 A 
r = 0.413 Ω/km 
x = 0.362 Ω/km 

NA2XS(F)2Y 1x150RM 
length= 7 km 
Un = 12/20 kV 
In = 309 A 
r = 0.210 Ω/km 
x = 0.122 Ω/km 
b = 79.796 S/km 

TABLE IV.  LV NETWORK LINE PARAMETERS. 
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Fig. 4. Power-flow through the HV/MV transformer in 2030 for fast EV
growth and different simulation cases (3.6 kW charging power). 

 

Fig. 5. Power-flow through the 160 kVA MV/LV transformer in 2030,
supplying a rural network, fast EV growth and different simulation cases
(3.6 kW charging power). 

Fig. 6. Power-flow of urban and rural feeders in 2030 for fast EV growth
and different simulation cases (3.6 kW charging power). 

Po
w
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 (M

VA
)

Rural LV network 
Urban LV 
network 

X00/0-A 70 
(NFA2X) 
Un = 0.6/1 kV 
In = 223 A 
r = 0.496 Ω/km 
x = 0.100 Ω/km 

X00/0-A 35  
(NFA2X) 
Un = 0.6/1 kV 
In = 142 A 
r = 0.972 Ω/km 
x = 0.100 Ω/km 

X00/0-A 4x16  
(NFA2X) 
Un = 0.6/1 kV 
In = 91 A 
r = 2.139 Ω/km 
x = 0.100 Ω/km 

PP 00-A 4x70 
(NAYY)  
Un = 0.6/1 kV  

In =175A   
r = 0.444 Ω/km  
x = 0.0754 Ω/km  
b = 254.5 S/km  

The urban LV network has a 400 kVA MV/LV 
transformer and a peak power consumption of 220 kVA 
(approx. 50 % of the transformer loading). There are five 
main lines and the maximal voltage drop is around 6 %. The 
lines are shorter, around 400 m altogether. The line 
parameters are given in Table IV. 

B. Transmission network model 

Modelling of the transmission network is a much easier 
task compared to the modelling of the distribution network 
due to lower complexity of the transmission network. 
Conventional power plants and industrial loads are modelled 
as nodal powers, injected at appropriate locations in the 
network, and MV/LV generation and loading are allocated 
through the network according to the topology. Transmission 
network encompasses HV levels at 110 kV, 220 kV and 400 
kV. The transmission network is not represented by some 
typical equivalents as in the case of distribution, but 
parameters of actual lines and transformers at HV level are 
taken into account when applying modelling suitable for 
power flow calculations. 

LOLE calculation does not require any network 
modelling, since only the generation adequacy is observed 
when the reliability of supply is assessed by the definition 
provided in [19]. Some further extensions of LOLE 
calculation that allow also for inclusion of network adequacy 
are available in [19]. However, these approaches were not 
applied in this research since network loading and 
identification of potential critical lines in terms of possible 
occurrence of overloading were assessed by means of 
standard power-flow calculation, as explained in the previous 
paragraph. 

As explained in Section III.B, the total power production 
and consumption have to be modified according to the long-
term national plans that incorporate all investments into new 
production units on the transmission level and the long-term 
load forecast for the year of interest. It is important to note 
that production at the distribution level is recognized as a 
lower consumption on the transmission level meaning that 
also the national long-term development plan for the 
distribution network is very important for this research. The 
analysis is focused on the year 2035 with noticeable share of 
EVs in transportation. 

V. SIMULATION RESULTS 

Simulation results are show separately for the distribution 
and the transmission network. 

A. Distribution network results 

Simulation results show the influence of EVs on 
distribution network operation for the year 2030. The 
conditions in 2017 are taken as the base case and a 
consumption growth of 1.5 % per year was taken into 
account. The results show the values with a 90 % probability, 

which are usually used when using Monte Carlo simulations 
[18]. This means that 10 % of the worst results is omitted. 

1) HV/MV transformer loading 
The impact of EVs on the transformer for both simulation 

cases for 2030 (C1, C2) is shown in Figure 4. The results 
show that a 14 % peak increase can be attributed to load 
growth and, depending on the case, up to 13 % to EVs. The 
afternoon charging (C1) has the highest peak because at that 
time the traditional consumption is also high. 
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Fig. 7. Voltage profile in rural LV network in 2030, for the case of single-
phase charging (3.6 kW charging power), fast EV growth and simulation
case C1. 

 

Fig. 8. Voltage profile in rural LV network in 2030, for the case of three-
phase charging (7 kW charging power), fast EV growth and simulation case
C1. 

2) MV/LV transformers loading 
The peak loading of MV/LV transformers in 2017 was 

around 60 % of their nominal power (see Figure 5). Due to a 
stochastic nature of household consumers, the power flow 
exhibits some variability. In the case of higher number of 
EVs in the network, the peak of the rural 160 kVA 
transformer rises from around 100 kVA to 130 kVA (i.e. for 
30 %). The peak power of the urban 400 kVA transformer 
rises for 14 %. 

3) MV and LV feeders loading 
The power flow of the MV urban and rural feeders is 

shown in Figure 6, where the differences of the two types of 
network can be also seen. More consumers of the 
commercial type are connected to the urban feeder, resulting 
in higher consumption during working hours. On the urban 
feeder, there is a higher peak due to EV charging around 
4:00 pm (case C1) or around 11:00 pm (case C2). On the 
rural feeder, there is a more distinctive EV peak in the 
afternoon.  

The results suggest that EVs will not substantially affect 
MV feeders loading, which is also due to the usually low 
loading of feeders in distribution networks because of 
conservative planning in the past. In comparison to MV 
feeders, the loading of LV feeders due to EVs is much 
higher. The loading will increase up to 16 % due to load 
increase and up to 50-67 % due to the impact of EVs. This 
suggests that LV networks are the most susceptible to EV 
integration. The main reason for higher loading is a 
simultaneous charging of EVs on the same LV feeder. 
Namely, in a rural network only a couple of EVs charging at 
the same time and on the same LV feeder can significantly 
increase the power flow. 

4) Voltage profiles 
Voltage drops on MV urban feeders are small in 

comparison to rural feeders, especially due to their larger 
cross-section and shorter length. In majority of cases, the 
voltage drops on urban feeders are up to 1 % and on rural 
feeders up to 4 %. We can conclude that voltage profile is 
not critical in this part of distribution network. 

In LV networks, the influence of single-phase connection 
of loads and EVs is significant. Figure 7 shows the LV 
profile in the rural network where all EVs are allocated 
randomly between phases and are charging with 3.6 kW 
(single-phase). Different colours present node voltages at 
different feeders. Even a small number of EVs charging on 
the same phase results in a relatively high asymmetry, which 
has an influence on loads and network losses. On LV 
feeders, the maximal voltage drop increases to 4.9 % due to 
the increased loading in 2030. However, single-phase EV 
charging results in much worse conditions, as the voltage 
drops can be more than 10 %, which is not acceptable for the 
majority of utilities. For comparison, Figure 8 shows the 
same situation as Figure 7, with the exception that EVs are 
charged through a three-phase connection with a power of 
7 kW. The difference is significant, i.e. the voltage drops are 
less pronounced. 

B. Transmission network results 

The performed analysis is focused on the year 2035. The 
results are presented for: 

 an initial case with a referential operating state for the 
year 2035 without EVs present, 

 cases C1 and C2 presented in Table II and 

 an additional case (C3) that presumes controlled 
charging of EVs by applying peak shaving. This 
scenario is interesting since the total consumption in 
peak hours can managed by an appropriate EV 
charging strategy resulting in a lower loading of the 
network. 

All scenarios consider long-term investment plans for 
generation units and transmission lines plus long-term load 
forecast for the year 2035. In addition, two specific time slots 
are observed: 

 TS1 – a moment of the yearly peak load for the whole 
system occurring in winter, in our case at 6 p.m. on 
Dec. 12, and 

 TS2 – a moment with the peak load of EV charging 
usually observed during the night, in our case at 
midnight on Dec. 12. 

Table V summarizes the results, where the average line 
loadings for all scenarios for both time slots are given in p.u. 
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in order to present the average increase of system loading 
caused by EV charging. As shown, in TS1 the system 
loading is generally not increased, since in all scenarios EVs 
are mostly charged before (C1, C3) or after (C2) the time slot 
TS1 (6 p.m.). Different results are obtained for time slot TS2, 
especially for scenario C2, with noticeable increase of the 
system loading (2.22 p.u.). In this case, EVs are charged at 
the same time during the night, which heavily loads the 
system. 

Table VI presents LOLE in h/year and p.u. Index LOLE 
reaches high values already in the initial scenario without 
EVs. This is the result of the fact that the national investment 
plan does not adequately follow the needs. The system is not 
self-sufficient and the missing energy is imported. With EVs, 
LOLE index is increasing and the most critical scenario is 
again scenario C2. 

The results show that the adequate EV charging strategy 
and charging control systems will be required in order to 
protect the transmission network from overloading and to 
obtain reliable supply of consumers. 

TABLE V.  AVERAGE LINE LOADINGS IN 2035. 

Scenarios for 2035 Pij (p.u.) Pij (p.u.) 
 TS1 TS2 
Initial scenario 
C1 
C2 
C3 

1.00 
1.01 
1.00 
1.00 

1.00 
1.52 
2.22 
1.52 

TABLE VI.  LOLE IN 2035. 

Scenarios for 2035 LOLE (h/year) LOLE (p.u.) 
Initial scenario 
C1 
C2 
C3 

355.92 
563.14 
655.12 
547.40 

1.00 
1.58 
1.84 
1.54 

 

VI. CONCLUSIONS 

The results show that first problems due to EV 
integration can be expected in LV networks, especially in 
rural LV networks, and will be associated with overloading 
of transformers as well as with high voltage drops. Even 
though the transmission network is less sensitive to the EV 
charging compared to distribution networks, substantial 
increase in line loading is expected. The results suggest that 
some actions in terms of controlled charging will be required 
in order to integrate a larger share of EVs and to avoid costly 
network reinforcements at the same time. These actions 
should result in more dispersed beginnings of charging and 
consequently lower power peaks. The proposed approach 
allows also for the analysis of advanced charging schemes 
and can be a useful tool in terms of network planning. 
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