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Abstract—Electric mobility leads to an increasing challenge
for power grid operators, particularly due to its high peak
power demand in low voltage grids in the scenario of home
charging. Power grid enhancements are considered either as
cost-intensive or as environmentally unfriendly and, hence,
more intelligent ICT-based solutions are needed for economic
and ecological reasons. Therefore, our intention is to develop
a practical approach of grid-friendly smart electric vehicle
charging methods. The approach entails two methods, namely:
(i) Proactive electric vehicle charging control via prediction
of available charging capacity and a corresponding intelligent
scheduling of charging processes; (ii) Reactive, decentralized
charging process control as a response to critical grid situations.
Proactive forecasting of available power capacity and energy
from (distributed) renewable sources can lead to a better
utilization of the power grid in place and extend the usage of
renewable energy, which is required for a successful turnaround
in energy policy. A reactive control of ongoing charging
processes guarantees that the power grid infrastructure can run
at its limits, while not overshooting power quality limits. This
bipartite concept exploits the flexible potential of the power
supply network and at the same time optimizes the ongoing
charging processes to meet the requirements of the grid.

I. INTRODUCTION

High penetration of Electric Vehicles (EVs) in the future
will put new challenges to residential low voltage power
distribution grids, especially when EVs are connected to
long feeder lines with spatial unevenly distributed loads.
Massive EV integration into the low voltage grid can cause
asset overloading and power quality problems such as critical
voltage drops if the grid is not appropriately enhanced or
an intelligent management is not established. However, EVs
can partially contribute to solve many existing issues in the
grid due to their hidden flexibility in terms of consumed
charging power and charging times. They can improve the
power quality, act as distributed storage units and support
the integration of distributed renewable energy sources.

The different emerging requirements of EV charging in-
frastructures such as high availability of fast chargers and
the possibility of performing multiple charging operations
simultaneously without causing shortages or power quality
issues, lead to the following (additional) roles of the power
Distribution System Operator (DSO):

• Monitor the consequences of additional charging points
for grid reliability, power quality regarding EN 50160
and the need for additional network capacity like with
normal grid connections.

• Provide proactive information on potential network
constraints for EV charging points to multiple market

stakeholders. In this way, good planning of charging
operations can eliminate most of the predictable grid
issues. Nevertheless, there is a certain overhead for
synchronization of grid data and the requirement for
a reliable ICT infrastructure.

Typically, the DSO while planning their grid considers
two criteria: (1) expected peak power at each grid connection
considering a simultaneous peak load factor and (2) voltage
drop/rise on the feeder line. Let us assume the following
scenario in a low voltage grid where a new charging sta-
tion/wallbox needs to be installed. Besides the peak power
of the residential units, an additional peak power for the
connection request is used in the calculation of the grid
enhancement. Typically, a peak power of 7.4 kW (balanced
on three phases) is assumed for one residential unit, 10.7 kW
for two residential units due to the simultaneous factor,
13.3 kW for three residential units and so on. An additional
wallbox with peak charging rate of 11 or 22 kW highly
increases the peak power of a grid connection point. First
analysis show a simultaneous factor of 0.4 with 11 kW
charging power in low voltage grids, still resulting in an
additional peak load of 4.4 kW. To handle the added peak
load in a 100% battery electric mobility scenario, there
are basically two options: traditional grid enhancement and
bottleneck management.

a) Grid enhancement: In Germany and most European
countries, the feeder lines in the low voltage grid are built
underground, which is highly costly and requires longer
installation time compared to overhead lines. Furthermore, in
case of very fast increasing peak demand (very fast adoption
of EVs), the required construction work is not manageable
for whole Europe. With overhead lines, grid enhancement
is faster and cheaper, but still consumes similar amount of
resources (aluminium, copper, etc.). Transformer stations in
urban areas are often hard to replace due to space limitation,
resulting in high costs. In any case, the grid enhancement
only is required for short peak loads in the distribution grids
during the day.

b) Bottleneck management: Limited resource (power
grid) can be managed in an intelligent way in order to
avoid bottlenecks, such as transformer overloading or voltage
problems. It can further be distinguished between proactive
and reactive control of feed-in and loads. The focus in this
paper is on intelligent charging process control.

Proactive scheduling of charging processes is based on
grid status forecasts and its goal is to avoid predictable line
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voltage drops or asset overloading in advance by shifting EV
charging processes to non-critical times and locations. The
grid forecast precision and the predictability of extraordinary
situations, e.g. traffic jams, which can impede or delay
planned charging operations, appear as a very challenging
point.

Reactive control of charging processes uses real-time
data, which is collected in the power distribution grid, for
estimating the current and future (very-short term) state of
the grid in order to control the charging stations behaviour,
e.g. by changing the charging power or other parameters
of the charging station. On one hand, this approach is not
always technically feasible due to missing support of charg-
ing station control functionalities. However, recent proposed
communication protocols/standards such as Open Charge
Point Protocol (OCPP) 2.0 for communication between
the Charging Station Management System (CSMS) and the
Charging Stations (CSs) and ISO 15118 for communication
between the CS and the EV propose standardized commu-
nication channels to overcome the technical limitations. On
the other hand, reactive control is not always economical,
especially for fast chargers, since the DSO must compensate
the EV user or the CSP for power curtailment similar like
it is defined for example in the German law EnWG §14a.

II. PROPOSED ARCHITECTURE

We propose a grid-friendly smart charging solution based
on proactive and reactive bottleneck management. The so-
lution is implemented using a multi-agent architecture, in
which the different agents, extracted from the electromobility
eco-system, communicate with each other to introduce a
grid-friendly smart charging service. The architecture of two
involved agents, representing the Charging Service Provider
(CSP) and the DSO, is depicted in Figure 1. These two
agents also provide interfaces to other stakeholders in the
eco-system, namely the Electric Fleet Operator (EFO) for
optimally scheduling fleets of EVs [1] and the Advanced
Driver Assistance Service (ADAS) representing the interface
to the user. Furthermore, they incorporate the two involved
physical systems, namely the power distribution grid to
gather measurements and the charging infrastructure to con-
trol the CSs.
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Fig. 1: Internal architectures of CSP agent and DSO agent.

A. CSP Agent

The CSP agent is split into a proactive and a reactive
part, which can be mapped to the smart charging solution of
ELECTRIFIC presented above.

• The proactive part includes four components: (1) The
Power Planner requests the available power capacity
from different energy sources from the DSO agent and
prepares a time series of available power capacity at
the CS that considers the CSPs objectives to maximize
the renewable intake but also takes the grid constraints
into account. (2) The Reservation Manager coordinates
reservations, charging profiles and availability of the
different connectors with the CSMS. (3) The Offer
Generator and (4) the Offer Pricer [2], [3] create and
price suitable charging offers.

• The reactive part includes the Smart Charger (SC) and
the PQ-Indicator - a micro service of the DSO agent
- which estimates the grid status by a PQ-Indic value
∈ [−1, 1] based on measurements from the power grid.
The control signals of the SC are send to the charging
station via the CSMS using OCPP. More details on the
proposed smart charging algorithms can also be found
in [4] and [5].

B. DSO Agent

The DSO agent introduces two kinds of services, one for
data gathering and one for forecasting.

• The first service of the DSO agent gathers measure-
ments from the low voltage grid in real time and
passes the recorded data to an event engine, which is
implemented using Apache Kafka1. The reactive part of
the CSP agent consumes the data from Apache Kafka
and processes the data in its algorithms. The same data
stream is used as input to the forecasting models in the
DSO agent.

• The second DSO service provides forecasts on the
available power capacity by considering historical data
and the physical properties of the distribution lines
and assets in the grid. The forecast calculation focuses
on predictable grid properties like asset overloading
and line voltages, which might occur during charging
processes. The Reward Scheme Calculator compresses
the predicted grid state information into a time series of
grid-friendliness options, where each option is tagged
with a Grid-Friendliness factor G ∈ [−1,+1]. The
computation of this factor uses similar logic like the
PQ-Indicator and is explained in [6].

The DSO agent contains a Power Reservation Manager,
which similarly to the Reservation Manager in the CSP
agent coordinates the reservation of power at grid connection
points. The power reservation implements a first-come-first-
serve strategy and the reserved power is considered during
the calculation of the Reward Scheme.

The remainder of the paper is structured as follows:
For each, proactive and reactive part of the system, we
first introduce the main ideas and second provide initial
evaluation of the approach. Finally, we conclude the paper
with a short summary and outlook to future work.

1kafka.apache.org/
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III. PROACTIVE PART

In the proactive solution of the proposed architecture, it
is important to have a good forecast of the grid situation in
order to plan future charging processes. Afterwards, the grid-
friendliness of a certain charging process can be calculated
using optimal power flow calculation. The result is then
communicated from the DSO agent to the CSP agent via the
Reward Scheme [6]. Via a reservation manager, the charging
power can be booked with a first-come first-serve strategy.
The focus in this paper is limited to the performance of the
prediction models for the power grid.

A. Concept

For the grid prediction part, we considered three different
models, namely simulation-driven, data-driven and a hybrid
model, which combines the strengths of the first two.

1) Simulation-Driven Model: The simulation-driven
model is built on a Newton-Raphson power flow solver
using the grid topology (transformer station, feeder lines
and grid connection points), recorded measurement data and
standard load profiles for each grid connection point. The
load profiles are connected to the grid connection points
and are adjusted to fit the measured data at the transformer
station. The training process for these profiles was done
manually using BDEW2 standard load profiles as basis and
parameterizing the type of profile (household, different type
of business), the power factor and the amplitude of the peak
load.

The advantage of the simulation-driven model is that the
current flow and the voltage drop can be calculated for every
point in the grid. Thus, these values can be used to calculate
and evaluate the impact of an additional charging operation
at any point in the grid. After evaluation, the most grid-
friendliest charging slots can be extracted and communicated
to the CSP agent with certain rewards.

2) Data-Driven Model: The data-driven model uses dif-
ferent data sources, including historical weather (tempera-
ture, rain index, sunshine hours and wind) from the German
weather service3, temporal classifications (day time, week-
day and working day), historical data of the charging stations
(P, Q, S and U), and measured data at the transformer (P, Q,
S and U). From the different machine learning methods, the
random forest regression showed the best results and was
thus used further for model tweaking.

The advantage of the data-driven model is that less knowl-
edge of the grid is required (no topology, no consumption
profiles). It purely operates on historical data and thus could
be used in a self-improving way by adapting to a changed
behaviour of grid users (e.g. adoption of the grid usage
prediction if a new PV system is installed in the grid).

3) Hybrid Model: To improve the accuracy of a purely
simulation-driven power grid model, we used predicted data
from the data-driven model to build a hybrid model. A major
improvement is required especially for voltage prediction.
The transformer loading (P, Q, S) is already quite accurately
estimated with the profiles. The power flow values are only

2The German Federation of Energy and Water created standard load
profiles for different German consumers [7]

3dwd.de

MAE MAPE RMSE Median Error Correl
P 11.87 kW 16 % 15.53 kW 9.34 kW 0.732
Q 15.48 kVAr 21.2 % 20.38 kVAr 11.9 kVAr 0.594
S 16.59 kVA 16 % 21.92 kVA 12.95 kVA 0.723

TABLE I: Accuracy metrics of the simulation-driven model.
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Fig. 2: Long-term simulation accuracy from September 2018
until August 2019.

very slightly influenced by the voltage values from the data-
driven model. This is due to the fact, that we use PQ
load profiles given, where the total power is not depending
on voltage values as it is with impedance or current load
profiles.

The advantage of the hybrid model is that the current flow
and voltage drop can be calculated and the voltage values
are much more accurate because they now also include the
data-driven predicted voltage oscillations from the medium
voltage level.

B. Evaluation

In the following, the testing periods and the accuracy of
the three different models are presented.

1) Simulation-Driven Model: The training period for the
simulation-driven model is from 23rd April, 2018 until 21st
May, 2018. The testing period is from 22nd May, 2018
until 4th June, 2018. In Figure 3 (a), the correlation of the
measured loading (y-axis) and the simulated loading (x-axis)
of the transformer for real power (P), reactive power (Q)
and apparent power (S) are represented. The figure clearly
shows the rigidity of the profiles in the stepwise changes
of the simulation (multiple measured values on y-axis are
simulated with the same value on x-axis). The MAE, MAPE,
RMSE, Median Error and Pearson correlation factor of the
simulation-driven model within this short testing period are
listed in Table I. A MAE of 16 kVA already provides enough
accuracy to schedule multiple slow charging operations or
fast charging operations by adding an additional safety
margin bigger than the expected model error.

In a long-term testing run from 1st September, 2018
until 27th August, 2019 (shown in Figure 2), the Pearson
correlation for P improves to 0.815 and the MAE get worse
to 13.79 kW (compared to short term test-run in Table I).
Similar observation can be seen for Q (correlation improved
to 0.682, MAE increased to 28.79 kVAr) and S (correlation
improved to 0.79, MAE increased to 26.59 kVA). Only the

3rd E-Mobility Power System Integration Symposium | Dublin, Ireland | 14 October 2019



24

134

24 134

m
ea

su
re

d

simulated

Transformer P (kW)

26

146

26 146

m
ea

su
re

d

simulated

Transformer Q (kVAr)

45

195

45 195

m
ea

su
re

d

simulated

Transformer S (kVA)

231

241

231 241

m
ea

su
re

d

simulated

Transformer U (V)

(a) Pearson correlation analysis of the simulation-driven model.
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(b) Pearson correlation analysis of the data-driven model.

Fig. 3: Comparison of simulation-driven and data-driven model.

MAE MAPE RMSE Median Error Correl
P 9.21 kW 12.5 % 11.86 kW 7.68 kW 0.882
Q 12.12 kVAr 13.0 % 15.46 kVAr 10.16 kVAr 0.866
S 14.68 kVA 12.4 % 18.96 kVA 11.36 kVA 0.875
U 1.11 V 0.5 % 1.39 V 0.96 V 0.583

TABLE II: Accuracy metrics of the data-driven model.
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Fig. 4: Voltage prediction of the simulation-driven model
(top) and the data-driven/hybrid model (bottom).

real power shows dynamic change in the profiles over the
seasons, reactive power and therefore apparent power are
have a fixed power factor. An improvement possibility of
the simulation-driven model is to use profiles that also add
seasonal effects on reactive power.

2) Data-Driven Model: The data set for the random
regression tree contains 15-minute resolution power grid data

and spans more than one year between 22nd April, 2018 until
20th May, 2019. For training the first 66% of the data set
are used, whereas the remaining data serves as test set. The
Pearson correlation is shown in Figure 3 (b) and accuracy
metrics to evaluate the usability of the model are listed in
Table II.

3) Hybrid Model: The data-driven model part for voltage
prediction was created the same way as the data-driven
model for transformer loading, described before. Figure 4
visualizes the comparison of the purely simulation-driven
(top) and the data-driven/hybrid model (bottom) concerning
their accuracy in voltage estimation. In the specific period
(10th September, 2018 until 17th September, 2018), the
MAE improved from 7.87 V to 1.3 V and the Pearson
correlation improved from 0.525 to 0.691.

IV. REACTIVE PART

We propose a decentralized architecture in order to sup-
port high scalability, in particular, the controller logic is
located at the actuator side, which in our case is the CS, and
has no direct communication with other CSs. It is based on
high-resolution data collected through Measurement Points
(MP) in real time. The DSO determines the locations in the
power distribution grid and the data resolution of each MP.
The data is delivered to an event-driven data collector (e.g.
Apache Kafka) via network connection, e.g., using power
line communication or dedicated Internet access. In order to
keep the transferred data over the communication channel as
small as possible and at the same time stable, we apply the
messaging pattern of publish/subscribe. Furthermore, OCPP
1.6+ is used to establish the communication between the
smart controlling algorithm and the CSs.
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Fig. 5: Traffic light concept of the PQ-Indicator [5].

A. Concept

As described in [4] and [5], the internal architecture of the
smart charging algorithm consists of two main components,
the PQ-Indicator and the Smart Charger.

1) PQ-Indicator: The task of the PQ-Indicator is to
estimate the grid state using measurement values from the
power distribution grid and to indicate the capability of
the grid for further charging operations. Each single power
quality parameter, such as voltage magnitude, and congestion
measurement, such as loading of the transformer, are normal-
ized to the range of [−1, 1]. The value −1 corresponds to
a drastic decrease of charging power and 1 indicates that a
higher charging power can be accepted by the low voltage
grid in terms of power quality and congestion. These single
PQ-Indic values of the different parameters are aggregated
in a hierarchical manner such that the output of the PQ-
Indicator is a value in the same range of [−1, 1]. Within this
range, the DSO defines sub-ranges, which can be visualized
using the traffic light model similar like in Figure 5. The
colour corresponds to the level, how critical the situation
is. Within the colour red, a very fast and strong reaction
is required, within yellow a smooth reaction is enough and
within green the grid is stable and the SC can control the CS
based on the users’ requirements, e.g. following the reserved
charging profile from the proactive part.

2) FSM-based Smart Charger: The SC component in-
ternally implements a Finite State Machine (FSM). Since
the PQ-Indicator differentiates between two different kinds
of required reactions, namely, increase and decrease, two
kinds of red (Red+, Red-) and yellow states (Yellow+,
Yellow-) states exist, one for increase and one for decrease,
respectively. However, the current state of the algorithm
corresponds to the last determined traffic light colour as
depicted in Figure 6. The transition between states depends
on the colour of the new PQ-Indic input value, which has
a significant role in defining the required reaction. For
example, a transition to the red state, independent of the
previous state, results in a polynomial increase/decrease of
the charging power and transitions to yellow result in a
linear adaption of the charging power. Within the green range
where the grid is in a stable state, the SC can follow the
requirements of the EV user.

Alternatively to the FSM-based solution, a TCP-like SC
that incorporates the PQ-Indicator as a notification mecha-
nism about the grid state can be used as well [8]. It considers
the previous states of the grid in order to react smoothly and
efficiently to the diverse sequence of events in the grid.

B. Evaluation

The aforementioned FSM-based SC is evaluated in a field
trial. The location of the field trial is in a small town in
Bavaria. The selected grid section connects 22 households,
21 shops and small commercials, three PV systems (with
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50 kWp) and four charging stations (together 7 AC connec-
tors and one DC connector with total power of 204 kW) to
a transformer using 64 cables. A cable with the length of
485 meters gives the maximum distance to the transformer.

From the field trial, we want to gain two main information,
first, how EVs are reacting to control signals send from the
SC to test the controllability and, second, how well the SC
performs in real world scenarios to evaluate its impact on
the power grid.

1) Controllability: Figure 7 depicts three important be-
haviours discovered during a ramp up of the charging power
by the SC. As can be seen in the first red circle, the
initial charging power is set to 18 kW (9 kW for each
of the two connectors), but the connected EV drains only
6.1 kW real power instead of expected 9 kW from the
grid. Instead, 9 kVA apparent power is measured during
this period. The reason is the bad power factor of the
rectifier at that power level. After the SC changed the power
limitation to 26.76 kW (13.38 kW per connector) in the
second red circle, the EV first stops the charging process
for a short moment, but finally reaches the desired level
after restart of the charging operation. This re-initialization
of the charging process happened only once out of five
tests with the same power level and takes approximately 26
seconds. In continuing tests, four other EVs of the same
manufacturer did not show this behaviour at all. Finally,
highlighted in the third red circle, the charging signal change
to 35.52 kW (17.76 kW per connector) resulted in an only
very small increase of the drained power of the EV and
even further increase did not have any effect. As against to
the specification of the used EV (maximum of 22 kW), the
maximum power level reached only 12.70 kW (13.36 kW)
with power factor of 0.95 lagging for unknown reasons.

Except from some outliers in Figure 8, the power factor
continuously increased with the attached charging power.
We can conclude that reducing the power level at charging
stations does not linearly reduce the used real power, as
reactive power consumption increases. It is important to
note, that the power factor is lagging, hence the load is
inductive, which is also typical for households. A leading
power factor would be more beneficial with regard to voltage
level stabilization at wallboxes, because it could compensate
the reactive power at households.
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2

4

6

8

10

12

14

0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 P

 [k
W

]

power factor [p.f.]

Fig. 8: Reactive Power behaviour of the EVs.

2) Impact: During a longer charging operation, depicted
in Figure 9, we analysed the impact of the SC on the
transformer loading. This scenario was created with very
close transformer loading thresholds in order to see the
reaction of the four connected EVs with a total controllable
power between 36 and 88 kVA. The impact on the voltage
is negligible, because all charging stations are placed near
to the transformer.

The background colouring of Figure 9 shows the PQ-
Indicator configuration with regard to transformer loading.
The yellow area at the bottom corresponds to Yellow+ (linear
increase) and the green area above corresponds to the stable
values green (increase is up to the SC, but as the charging
profile is defined to be the maximum charging power of the
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Fig. 9: Impact of the Smart Charger.

EV, also linear increase). The yellow and red area above
correspond to Yellow- and Red- and result in a linear and
polynomial decrease, respectively. In the area above red,
the SC decreases the charging power with the maximum
configured value in order to avoid voltage swells. The three
curves show the behaviour of the SC (blue) and the estimated
baseline scenarios with uncontrolled charging (green) and no
charging at all (red). During this charging period, the SC was
able to reduce the peak loading by 13.5%, while increasing
the power consumption in the valleys, such that the standard
deviation of the transformer loading reduces by 44%. In
that specific scenario, the SC reactions reduced the overall
delivered energy to 61% compared to the uncontrolled
baseline scenario.

V. CONCLUSION AND FUTURE WORK

This paper proposed a complete architectural concept
towards grid-friendly electric vehicle integration by sepa-
rating the proactive planning part and the reactive control
part. The forecasted grid data - obtained using different
forecasting models - is made available to the charging
service provider via the Reward Scheme. After selecting a
suitable charging profile, the smart charger avoids congestion
and voltage problems, while following the users’ demand.
Furthermore, both concepts are evaluated using field trials,
which underlines the applicability to real world scenarios.

In the future, the interoperability of both concepts will be
investigated deeper, more particular, how both, proactive and
reactive, interact in real life scenarios.
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