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Abstract— Battery Electric Vehicles (BEV) are getting 
increasing intention when it comes to reaching the emissions 
targets within the transportation sector. In principle, BEV offer 
the flexibility to be charged in hours with low CO2 emission. The 
total amount of such flexibility for the overall energy system is 
determined in an agent-based simulation and applied within a 
fully sector-coupling optimization model (electricity, heat, 
transport). This allows to examine the effects from utilizing this 
flexibility on reducing the carbon footprint of charging. The 
flexible share of the BEV charging load is found to be correlated 
positively with the charging power and reveals that at least 77 % 
of the charging load can be shifted in time when the charging 
power peaks. It is shown, that charging processes during 
working hours can mostly be delayed for 4-9 hours whereas the 
major share of load while the vehicle is at home has possible 
delay times of more than 10 hours. While harnessing this 
flexibility, carbon-optimized charging can further reduce the 
carbon footprint of BEVs by a maximum 9.1 g CO2/km which 
equals 24 % in 2025.  

Keywords—E-mobility, decarbonization, sector coupling, CO2 
intensity, load shifting, agent-based modelling  

I. INTRODUCTION 
The Intergovernmental Panel for Climate Change recently 

underlined the importance to restrict global warming to 2 °C 
as stated within the Paris agreement. To reach this target cross-
sectoral (electricity, heat, transport) measures have the 
potential to contribute greatly to the transformation of the 
energy system. In this context the road transportation sector is 
still at its beginning of the transformation showing significant 
emission reduction potential. Besides other possible 
technologies, Battery Electric Vehicles (BEV) attract rising 
interest as key technology. Beyond their primary use for 
driving, the flexibility potential of BEV can be used to reduce 
CO2 emissions in the electricity sector by aligning charging 
times with the electricity generation from renewable energy 
sources (RES). 

Several works model large-scale aggregated BEV fleets 
and determine the flexibility potential of the charging process, 
e.g. Skiba and Moser in [1]. While Schäuble et al. in [2] derive 
the load shift potential from BEV in terms of exogenously 
fixed charging strategies, Babrowski et al. in [3] obtain the 
load shift potential by means of qualitatively determined 
lower and upper optimization limits. In [4], Zhang et al. 
published a detailed BEV charging optimization approach 
with accurate derivation of upper and lower limits for a non-
perfect foresight optimization. Their formulation avoids 
overestimating the possible charging power. 
Sadeghianpourhamami et al. in [5] use real charging data from 
BEV and determine the flexibility similar to [4]. With the 
objective to flatten the charging profile, they conclude that 

BEV charging at the workplace can be used to fill the 
afternoon valley and BEV charging at home can be used to fill 
the night valley.  

Seddig et al. in [6] utilize the derived flexibility of BEV 
charging to integrate RES within a parking garage of 650 BEV 
showing that the RES utilization can be doubled. The potential 
reduction of CO2 emissions from BEV charging is further 
examined by Howey at al. in [7] and Pasaoglu et al. in [8], 
where the authors apply annual average CO2 emissions for the 
generated electricity. Hourly emissions for electricity are 
applied by McCarthy and Yang in [9], Hoehne and Chester 
in [10] and Robinson et al. in [11] whereby they do not 
consider future scenarios. In contrast, [8] covers the 
development over several years until 2050. The major 
distinction of the approach in [9] compared to [10] and [11] is, 
that the authors do not apply the average emissions over all 
generating power plants  but the hourly emissions of the 
marginal power plant. Their argument is, that BEV charging 
increases the load, which has to be satisfied by increasing the 
generation from the marginally generating power plant. The 
works of Jochem et al. in [12] as well as Ripp and Steinke 
in [13] take up on this discussion. In [12], several methods for 
the determination of emissions  related to BEV charging are 
examined. The authors in [13] published their work regarding 
the implementation of the calculation of hourly emissions 
based on the hourly average electricity mix as well as 
emissions based on the marginal generating power plant. 
Special emphasis should be given to the fact, that they 
integrate these methods within the fully sector-coupling 
energy system development plan model  (ESDP) (cf. Müller 
et al. in [14]).  

This paper examines the development of emissions for 
charging a large fleet of BEV until 2030 in ESDP based on the 
hourly average emissions for electricity as in [13]. Thereby, 
charging profiles and the corresponding hourly flexibility of 
are determined with an agent-based simulation and used as 
input for the optimization within ESDP. The academic 
contribution of our work is firstly the hourly quantification of 
shiftable load and the corresponding maximal delay time for a 
large fleet of BEV within an agent-based simulation based on 
real driving data. Secondly, we examine the development of 
emissions from BEV charging based on endogenously 
determined CO2 emissions from electricity within a fully 
sector-coupling energy system model.  

The remainder of the paper is structured as follows. While 
chapter II focuses on the computation of charging profiles and 
the corresponding flexibility potential, chapter III derives the 
hourly carbon footprint of the energy system and shows the 
resulting implications for emissions of BEV charging with and 
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without controlled charging. Finally chapter IV discusses the 
results and chapter V summarizes the work. 

II. MODELLING OF BATTERY ELECTRIC VEHICLE CHARGING 
This section focuses on the modelling approach and the 
assumptions made to derive aggregated BEV charging 
profiles. On this basis, the main objective of this chapter is to 
deduce the share of flexible load in dependency of the 
aggregated charging profiles.  

A. Charging profiles 

To investigate the impact of BEV on the energy system, 
aggregated charging profiles of BEV are required. Thus, 
individual driving profiles of 10,000 BEV based on data of the 
German mobility study [16] are modelled within an agent-
based simulation in NetLogo [17] whereby aggregated 
charging profiles are computed. 

Input 

An agent-based model consisting of heterogenous agents each 
of whom depicting an individually simulated vehicle is 
applied. The heterogeneity of the fleet is described by the main 
vehicles’ attributes such as battery capacity, the vehicle’s 
consumption and available maximum charging power at the 
charging station at home or at work. Based on the market 
shares of electric vehicle models in 2018, the battery capacity 
varies between 20 kWh and 60 kWh mainly reflecting entry 
level BEV (e.g. Renault Zoe and Nissan Leaf) and partly 
premium BEV such as defined in [18] by the International 
Renewable Energy Agency. For the charging power at home, 
it is assumed that 90 % of the BEV are using a single phase 
16 A charger as provided by the standard 230 V circuit in 
Germany, which results in a maximal charging power of 
3.7 kW. The remaining cars charge with 7.3 kW based on 
single phase charging with 32 A fuses. By contrast, the 
charging power at workplaces is uniformly set to 11 kW. It is 
assumed, that there are no restrictions on the availability of 
charging stations, which implies that every BEV can connect 
to the charger whenever it arrives at a charging station at home 
or at work. Given that the mean electricity consumption of 
BEV cars is 17.5 kWh per 100 km in 2018 the consumption 
of each vehicle is normally distributed around this mean value 
with a standard deviation of 2. On account of this distribution, 
the consumption rates vary between reasonable values of 
13 kWh and 23 kWh per 100 km. 

Driving profiles based on real driving data from a German 
mobility study [16] are used in order to determine the required 
charging energy of a single vehicle when arriving at a 
charging station at work or at home. This study is based on a 
survey comprising 60,713 individuals who recorded their 
daily driving trips. The allocation of these trips is conducted 
by randomly assigning daily driving profiles, consisting of 
several consecutive trips, to each BEV for every simulated 
day. Thereby the vehicles are clustered into commuters and 
non-commuters. The group of commuters makes up for 60 % 
of all trips on working days and 7 % on the weekend [16]. 

Model 

The model for generating hourly charging profiles of BEV can 
be obtained with the assumption that every BEV starts 
charging directly at arrival with the maximum available 
charging power 𝑃𝑛. Hereby, the charging levels of each BEV, 
at location 𝑛 ∈  𝒩 =  {ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘} are considered, until the 

BEV departs at 𝑡𝑑  or the batteries’ state of charge (SOC) 
reaches 100 % at 𝑡𝑓𝑢𝑙𝑙. Fig.  1 illustrates the procedure for an 
individual BEV for the entire simulation period T.  

Each BEV has an explicit state which is known for every 
simulated time step 𝑡 ∈  𝔗 = {1,… , 𝑇}. The states “driving” 
and “parking” are distinguished whereby for the state 
“parking” different locations are considered.  These states are 
derived from the driving profiles and the corresponding lists 
𝑇𝑎 and 𝑇𝑑, which consist of all arrival and departure times for 
the entire simulation period and which are deduced as 
explained above.  

While a BEV is driving, the SOC is reduced according to the 
BEVs specific consumption and the driven distance  𝑑(𝑡) 
within each hour of the simulated period. The latter is derived 
from the driving profiles. Every time a BEVs state changes 
from “parking” to “driving” the next arrival and departure 
times are selected from the corresponding lists (cf. box 
“Driving” of Fig.  1). 

If a BEVs state is “parking”, the charging power is determined 
and subsequently, the flexibility potential is calculated as 
described in chapter II B. To determine the charging power, 
each location n differs in its maximal available charging 
power 𝑃𝑛 (cf. TABLE 1). While the battery is not fully charged 
and not expected to reach a SOC of 100 % in the current time 
step, the charging power is set to the maximal available 
charging power at the current BEVs location. If the remaining 
required charging energy in t of a BEV is smaller than the 
maximal hourly charging energy at the current vehicles’ 
location, the charging power is reduced to the remaining 
energy required to reach a SOC of 100 % divided by the 
simulation time interval ∆𝑡, which is set to 1 hour. (cf. box 
“Charge at arrival” of Fig.  1). 

Output 

Given the individual charging profiles of a 
BEV  𝑣 ∈  𝒱 =  {𝑣1, … , 𝑣𝐾}  with K being the number of 
simulated BEV as in TABLE 1, the aggregated charging profile 
of all BEV 𝑝𝑛

𝑐ℎ𝑎𝑟𝑔𝑒,𝑠𝑢𝑚  at location n is obtained by the 
summation of all corresponding charging profiles as in (1). 
Additionally, the total charging profile 𝑝𝑐ℎ𝑎𝑟𝑔𝑒,𝑠𝑢𝑚  is 
obtained by a summation over all locations as in (2). 

 𝑝𝑛
𝑐ℎ𝑎𝑟𝑔𝑒,𝑠𝑢𝑚

(𝑡) = ∑ 𝑝𝑛
𝑐ℎ𝑎𝑟𝑔𝑒(𝑡), ∀𝑛 ∈ 𝒩, 𝑡 ∈ 𝔗𝐾

𝑣=1  () 

 𝑝𝑐ℎ𝑎𝑟𝑔𝑒,𝑠𝑢𝑚(𝑡) = ∑ 𝑃𝑛
𝑐ℎ𝑎𝑟𝑔𝑒

(𝑡)𝑛∈𝒩 , ∀𝑡 ∈ 𝔗  () 

TABLE 1 PARAMETERS FOR CHARGING PROFILE GENERATION 

Parameter Value Symbol 

Number of  simulated BEV 
within NetLogo 

10,000 K 

Number of considered BEV 
within ESDP 11.3 mio - 

Charging power home 3.7 kW 
7 kW 

𝑃ℎ𝑜𝑚𝑒 

Charging power work 11 kW 𝑃𝑤𝑜𝑟𝑘 

Battery capacity 20, 40, 60 kWh 𝐶𝑏𝑎𝑡 

Mean consumption 17.5 
kWh/100 km 

c 
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Finally, the resulting aggregated charging profiles, which 
are based on parameters as in table 1 are normed to the total 
annual charging energy. The profiles vary between days 
within a week but no seasonal variations are assumed based 
on minor variations in seasonal driving patterns [16]. The 
normed profile for an exemplary week is depicted as line 
“Total charging power” in Fig.  2 and described within the 
next chapter.  

B. Flexibility of Battery Electric Vehicle charging 

After determining aggregated charging profiles, this 
section focuses on the flexibility of the individual and 
aggregated charging processes. The flexibility 𝑓𝑠𝑢𝑚 of a fleet 
of BEV is defined by the two parameters 𝑝

𝑡𝑑𝑒𝑙𝑎𝑦
𝑓𝑙𝑒𝑥,𝑠𝑢𝑚  and 

𝑡𝑑𝑒𝑙𝑎𝑦 ,  where 𝑝
𝑡𝑑𝑒𝑙𝑎𝑦
𝑓𝑙𝑒𝑥,𝑠𝑢𝑚 is the power at time step t which can 

be delayed for a maximal period of 𝑡𝑑𝑒𝑙𝑎𝑦.  

Assessing the flexibility potential of a fleet of BEV 
requires accurate knowledge about the state of each individual 
BEV. Therefore, at first the flexibility potential 𝑓𝑖𝑛𝑑of one 
individual BEV is derived assuming that the vehicle’s battery 
shall be fully charged at the end of the parking period. The 
procedure is illustrated in Fig.  1. 

Model 

When a BEV reaches a charging location n at 𝑡 = 𝑡𝑎, the 
duration of the parking session, denoted within the flow chart 
as “parktime”, and the required time to reach a SOC of 100 %, 
which is denoted as “chargetime”, are derived. Furthermore, 
the time 𝑡𝑓𝑢𝑙𝑙 when the BEV is fully charged according to the 

charge at arrival method is computed. The maximal shiftable 
power and its corresponding delay time 𝑡𝑑𝑒𝑙𝑎𝑦 are obtained at 
which the delay time is defined as the difference between the 
parktime and the chargetime. Note that the delay time is equal 
for every hour of an entire parking session until the state 
changes to “driving”. For this, we take the simplification that 
the charging process cannot be interrupted or decelerated by 
reducing the charging power but only the starting time of the 
charging process can be shifted in time. This assumption 
makes the method also applicable to other e.g. industrial 
processes that may be shifted in time. Further, it is required to 
quantify the shiftable power 𝑝𝑛𝑖𝑛𝑑  of a single BEV for the 
corresponding 𝑡𝑑𝑒𝑙𝑎𝑦 . Central assumption is that the charging 
power of a BEV can only be shifted if 𝑝𝑛

𝑐ℎ𝑎𝑟𝑔𝑒
> 0 and the 

duration of the parktime is greater than the chargetime. 
Moreover, 𝑝𝑛

𝑓𝑙𝑒𝑥 can only be reduced by the charging power 
𝑝𝑛
𝑐ℎ𝑎𝑟𝑔𝑒  as scheduled when the BEV would immediately 

charge at arrival (cf. box “Flexibility potential” of Fig.  1). 

Output 

Consequently, the flexibility find of a single BEV can be 
defined as in (3). 

 𝑓𝑖𝑛𝑑  (𝑡) = {𝑝𝑛
𝑓𝑙𝑒𝑥

(𝑡), 𝑡𝑑𝑒𝑙𝑎𝑦(𝑡)}, ∀ 𝑡 ∈ 𝔗 () 

On this basis, the aggregated flexibility potential in each 
hour for the entire simulation period T of a fleet of BEV can 
be obtained from the sum of the individual flexibility sets 

 
Fig.  1 Flow chart of charging profile generation and determination of flexibility potential for an individual BEV as simulated within agent-based model 
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BEV parameters

state(t) state of BEV with 
 𝑡 𝑡𝑒 𝑡 ∈ {𝑝 𝑟𝑘 𝑛 𝑛 , 𝑑𝑟 𝑣 𝑛 }

c consumption in kWh per 100km

𝐶𝑏𝑎𝑡 battery capacity of BEV in kWh

𝑡𝑎 ∈  arrival time

𝑡𝑑 ∈   departure time

Simulation environment parameters

T Number of simulated time steps with 
𝑡 ∈ 𝔗 = {1,… , 𝑇}

∆𝑡 time interval (1h)
𝑛 location with 𝑛 ∈ 𝒩 = {ℎ𝑜𝑚𝑒,𝑤𝑜𝑟𝑘}

𝑃𝑛 charging power at location n

BEV variables

  𝐶 𝑡 state of charge

𝑝𝑛
𝑐ℎ𝑎𝑟𝑔𝑒

𝑡 charging power

𝑝𝑛
𝑓𝑙𝑒𝑥

𝑡 flexible power

𝑡𝑑𝑒𝑙𝑎𝑦(𝑡) delay time
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separately for each value of 𝑡𝑑𝑒𝑙𝑎𝑦 . Finally, the flexibility 
for a fleet of BEV can be expressed as in (4). 

 𝐹𝑣 = {𝑝𝑡𝑑𝑒𝑙𝑎𝑦
𝑓𝑙𝑒𝑥

(𝑡), 𝑡𝑑𝑒𝑙𝑎𝑦(𝑡)}, ∀ 𝑡 ∈ 𝔗 () 

Fig.  2 shows the charging power of a fleet of BEV normed 
to the weekly energy consumption and the corresponding 
flexibility for each hour of four consecutive days within an 
exemplary week of the year. The charging profile is separated 
into home and work charging (cf. (1)) with a peak at 7pm 
(home) and an additional peak on working days at 9am (work). 
The figure shows, that the flexible share of the charging power 
with a mean value of 74 % underlies daily patterns with a daily 
minimum of 24 % to 29 % (working days) and 37 % to 42 % 
(weekend) at 5am. Simultaneously, the charging power has a 
minimum at 5am. The morning peak load on working days, 
caused by work charging, correlates with a high share of 
flexibility stating more than 89 % of the load as flexible. 
While the flexibility   during the daily charging peak hour is 
with 77 % - 78 % (working day) and 81 % - 83 % (weekend) 
slightly lower compared to the morning peak hours, the daily 
maximum flexible share of 93 % occurs 3 hours later at 10pm. 
An in-depth analysis of the correlation between the charging 
power and the corresponding flexibility potential is visualized 
in  Fig.   (a). Looking at the hours in which the charging 
power at home exceeds the charging power at work, the 
flexible share has a mean value of 70.4 % and only falls below 
52.5 % when the charging power related to the week load is 
below 0.002 of the week load. This occurs only between 3am 
and 6am (cf. Fig.  ) when most BEV are already fully charged 
if they would start charging immediately after arriving. An 
even higher share of flexibility with a mean value of 86.8 % 
can be seen for hours in which the work charging power 
exceeds the home charging power. During these hours the 
flexibility never falls below 59.2 %.  

Moreover, the flexibility potential represented in Fig.  2 is 
differentiated by delay times whereas the delay times are 
summarized in intervals for better visualization. The graph 
shows that the load, which can be shifted for more than 
12 hours, increases during the day until 7pm and decreases to 
zero until 1am. The night hours after 8pm are dominated by 
load, which can be shifted for 7 to 12 hours whereas the 

flexible load with higher delay times reduces as time 
progresses until the morning hours. During work charging 
dominated hours between 7am and 11am, the major share of 
flexible load can be shifted for 4-9 hours. These delay times 
are subsequently defined as medium term flexibility. The 
share of short term flexibility in contrast, with a maximal 
delay smaller than 4 hours, rises from 7am until 10am. The 
consecutive hours until 3pm are dominated by short term 
flexibility. Fig.  3 (b) summarizes the share of load which can 
be shifted for a specific delay time and distinguishes between 
home charging and work charging dominated hours. Main 
finding from this graph is, that home charging dominated 
hours which were found to have a lower mean value of flexible 
load occur to have longer possible delay times with 57 % of 
the flexible load being able to shift for at least 12 hours. By 
contrast, 73.8 % of the flexibility of work charging dominated 
hours occurs to be medium term flexibility. This difference 
can be traced back to the parking time at work which is 
typically shorter than the parking time at home.  

III. CARBON FOOTPRINT CALCULATION OF BEV CHARGING 
In order to determine the carbon footprint of BEV 

charging as in chapter III C, an hourly CO2 intensity is 
calculated in chapter III B based on a multi-modal energy 
system model as described in chapter III A. 

A. Energy System Development Plan 

The multi-modal energy system development plan (ESDP) is 
a mixed-integer linear optimization tool with the objective to 
determine a cost-optimal decarbonization pathway over 
several years as well as the optimal dispatch of all 
technologies for each hour of the year. Additionally, it is a 
fully sector-coupling model considering electricity, heat, 
cooling and transportation.  
The main constraint driving the transition of the system is the 
CO2 limit, which can either be implemented as a price, 
reflecting a CO2 tax, or as a total amount, where the CO2 price 
is determined endogenously based on the binding CO2 
limit [14]. 
 
Within this paper, a multi-modal transformation pathway 
from 2015 to 2030 for the German energy system is derived 
based on a socio-, techno-economic scenario that has been 

 
Fig.  2 Normed charging power at home and work as well as corresponding flexibility potential differentiated by delay times in each hour of four 
consecutive days within an exemplary week  
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developed with partners of the German publicly funded 
Kopernikus research project ENSURE. The scenario is 
shaped by the ambitious CO2 reduction objective of 78 % 
across all sectors until 2030. This requires severe measures 
such as a strong electrification of heat and traffic. 
Additionally, a decline in exogenous electricity demand is 
assumed within the scenario. Hence, an annual electricity 
consumption by BEV in 2030 of 29 TWh is assumed within 
the scenario being equivalent to about 11.3 mio cars. For 
computational reasons only four representative weeks within 
each modelled year are computed.  

 
The derived charging profiles as described in chapter II are 
used within ESDP as input. Therefore, the profile is scaled to 
an annual electricity consumption of 29 TWh. To validate the 
upscaling, the number of simulated cars has been varied 
within the agent-based simulation showing, that the normed 
load profiles do not differ significantly when the number of 
BEV is increased above 10,000. The optimization of these 
profiles is based on a load shifting approach according to 
Zerrahn and Schill [19] enabling the detailed integration of 
the derived flexibility of BEV charging as described in 
chapter II.B. As explained before, we assume that a specified 
share of charging power can be shifted for a specified delay 
time. Thereby, it is ensured that the total energy stays 
constant and load is only shifted in time but not curtailed. 
This general approach was modified for the specific use case 
of BEV charging as follows. First, load can only be shifted 
into the future, since the BEV charging profiles are based on 
the assumption, that cars are able to start charging 
immediately after their arrival. Secondly, the newly 
generated profile is limited to the maximum peak load of the 
original load profile. This ensures that load shifting of BEV 
charging cannot increase the peak power and thus grid 
overloading is avoided. This means that we assume, that all 
grid constraints even within low voltage grids are not 
exceeded by the original profile. Finally, the consideration of 
accurately determined delay times ensures that the charging 
power of a BEV is still available from the same BEV at the 
same location when the load is shifted within this delay time 
period. 

B. Determining the hourly carbon footprint of electricity 

In order to accurately determine the emissions that accrue 
during the charging process of a fleet of BEV, knowledge of 
the so called As-Is CO2 Intensity 𝐼𝐴𝑠−𝐼𝑠  of the commodity 

electricity is required [13]. The idea is to assign emissions, 
which emerge within the multi-modal energy system, to all 
kinds of commodities equally by adding up all CO2 emissions 
related to the generation of electricity and dividing by the total 
amount of produced energy in the considered hour. The main 
difference to other approaches, such as published by Stoll et 
al. in [20], is that they mostly assign the emissions only to 
electricity and, for instance, do not consider sector coupling 
and large-scale storage. The mathematical calculation within 
a multi-modal energy system as implemented in ESDP is 
extensively described in [13]. On this basis, henceforth we 
only cover the description of the basic assumptions considered 
within the modelling process: 

• CO2 emissions are distributed among all considered 
commodities based on their corresponding energy 
outflows. Considered energy outflows are all energy 
outflows, which are useful energies and are not 
considered as losses. 

• Only emissions, which accrue within the system 
boundaries by converting primary energies into 
secondary energies are accounted for. Imported 
secondary energies such as electricity from beyond 
the system borders are considered as carbon neutral. 

• Exporting electricity or heat from the system does not 
reduce the total emissions within the system 
boundaries. 

• Only operational emissions from primary fuel 
conversion are considered. Life cycle emissions for 
the technology and infrastructure are neglected. 

Fig.  4 shows the hourly electricity generation per 
technology as well as the corresponding CO2 intensity for an 
exemplary summer week in 2025 for the scenario SLB as 
described in the previous section. It is apparent, that daily CO2 
intensity patterns emerge that can be traced back in 
particularly to the volatile electricity generation from 
renewable energy sources (RES). The CO2 intensity varies 
between 0 t/MWh and 0.64 t/MWh. It can be seen, that the PV 
dominated electricity generation between 8am and 5pm with 
up to 60 GW supply from PV displaces all conventional 
technologies during these hours, which subsequently reduces 
the CO2 intensity to zero. Lignite and coal power plants add 
up to 15 GW predominantly in hours with low PV and wind 
feed-in during the night. Thereby, two different CO2 intensity 
levels can be identified during the night. Firstly, the nightly 
CO2 intensity peak, which occurs at about 2am, varies from 

 
Fig.  3 (a) Correlation between charging power and flexibility potential and (b) delay time of load during work and home dominated hours 
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day to day between 0.5 t/MWh and 0.64 t/MWh. Secondly, at 
about 10pm the intensity varies between 0.36 t/MWh and 
0.45 t/MWh. The difference between 10pm and 2am is mainly 
caused by the utilization of pumped-water storage and Li-Ion 
batteries. These storage technologies are charged when 
electricity is cheap at hours with high electricity generation 
from RES which correlates with low CO2 intensities as 
described in [20] and verified for the modelled scenario SLB. 
Since the CO2 intensity while charging these storages is 
considered, the outflowing low carbon related electricity from 
storage reduces the CO2

 intensity of electricity within the 
corresponding hours. 

In addition, it holds that CO2 emissions from heat and 
electricity generating technologies (lignite, coal and gas 
power plants) are prorated to both commodities by their hourly 
energy output, which basically reduces the emissions assigned 
to electricity. After all, the differences between the nightly 
CO2 intensity peaks primarily emerges from differences in the 
total hourly generated electricity and the produced heat from 
lignite, coal and gas power plants.   

The transition of the energy system between 2015 and 
2030 is driven by the ambitious decarbonization targets. By 
that, the generation technologies, as depicted in Fig.  5 (a), 
change rapidly. The graph reveals, that after the nuclear phase 
out in 2022 also lignite and coal power plants phase out 
completely until 2030. It is apparent, that the omitted 
conventional electricity generation is replaced by RES 

representing about 58 % and 73 % of the total electricity 
generation in 2025 and 2030 respectively. The predominant 
renewable technologies in 2030 are onshore wind-turbines, 
which account for 188 TWh respectively 38 % of the total 
electricity production. They are accompanied by 64 TWh 
from offshore wind-turbines and 73 TWh from PV, whose 
major share is generated during the summer months. These 
highly volatile generation technologies are complemented by 
94 TWh from gas turbines, which are less carbon-intensive 
than coal power-plants and more flexible. Nevertheless, it is 
necessary to harness the volatile electricity production by 
means of flexible demand, which mainly comes from power-
to-heat technologies such as resistive heaters with large 
thermal storages. Optimized BEV charging can add to this 
flexibility and this effect is investigated here.  

Fig.  5 (b) compares the annual CO2 intensity distributions, 
which result from the previously described generation mix, 
from 2015 to 2030 using box plots for easy quantification and 
comparison. This depiction is revealing in several ways. First, 
the mean value from 2015 to 2025 decreases almost linearly 
from 0.42 t/MWh to 0.22 t/MWh before it drops down to 
0.05 t/MWh in 2030 due to the coal phase out. Additionally, 
the reduction of the mean value from 2020 to 2025 is slightly 
less than in the first 5 years due to the displacement of all 
remaining nuclear power plants. Second, the upper whisker 
showing the hours with the maximum CO2 intensity stays 
almost constant until 2025 between 0.64 and 0.66 t/MWh. 
These high values occur during coal dominated hours. A 

 
Fig.  4 Hourly electricity generation (left ordinate) and CO2 intensity (right ordinate) for an exemplary summer week in 2025. Imported electricity is not 
depicted within this diagram since it is considered as carbon-neutral. 
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Fig.  5 (a) Annual electricity generation and (b) annual CO2 intensity distribution 
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significant drop in 2030 down to 0.2 t/MWh is an indication 
for a coal-free system, where the CO2 intensive hours are 
dominated by heat and electricity producing gas power plants. 
Third, the inter-quartile range, which is depicted as filled box 
and which represents the middle 50 % of all hours in terms of 
CO2 intensity, increases until 2025 and significantly decreases 
in 2030. This allows for quantified statements about the 
volatility of the CO2 intensities and it is indicative for the 
potential of optimized charging since load can theoretically be 
shifted from CO2 intense hours to hours with a very low or 
even zero CO2 intensity. The graph reveals that the highest 
volatility and thereby the highest potential for carbon 
optimized charging is in the year 2025 with the upper whisker 
at 0.64 t/MWh, the lower quartile at 0 t/MWh indicating a 
high share of carbon-neutral hours and the upper quartile 
being at 0.34 t/MWh. Based on this, the subsequent analysis 
regarding the carbon footprint of BEV charging and the 
potential benefits from optimized charging, focuses on the 
year 2025. 

C. Carbon footprint of BEV 

Finally, the hourly emissions assigned to the charging of a 
fleet of BEV is calculated based on the hourly CO2 intensity 
and the aggregated charging profile, which depends on the 
annual BEV penetration. 𝐹  .  6 (a) shows the resulting total 
annual emissions from BEV charging each year. The depicted 
penetration level of BEV is based on the total amount of 44.4 
mio passenger cars in Germany [21]. It can be seen, that the 
occurring amount of CO2 caused by uncontrolled charging is 
3 mio tons in 2020, when 9.7 TWh are generated to satisfy 
the mobility demand of 3.8 mio BEV. In 2025 the amount of 
BEV doubles to 7.5 mio BEV, which corresponds to a BEV 
penetration of 17 %. The CO2 emissions in contrast only 
increase by 40 % to 4.22 mio tons. This comparatively low 
increase is due to the simultaneously increasing share of RES 
and hence the decreasing mean CO2 intensity as described 
above. It is noticeable that from 2025 to 2030 the total CO2 
emissions drop significantly down to 1.62 mio tons, despite 
the further increase of BEV within the system to a penetration 
level of 25 % (11.3 mio cars). This is due to the coal phase 
out and the further rising penetration level of RES reaching 
72.2 % in 2030.  

Besides major investments in RES and hence a reduced 
CO2 intensity for electricity, the controlled charging of BEV 
within its flexibility limits can reduce the total emissions 

from passenger cars. The main impact can be seen in 2025 
where 7.5 mio BEV with controlled charging produce only 
7.7 % more tons of CO2 than 3.8 mio BEV with uncontrolled 
charging in 2020. This amounts to a CO2 reduction from 
controlled charging of 1 mio tons of CO2 in 2025.  

Fig.  6 (b) shows additionally the specific emissions per 
driven kilometre for BEV. The specific emissions with 
uncontrolled charging decrease from 75.1 g CO2/km in 2015 
to 9.8 g CO2/km in 2030. The impact of carbon optimized 
charging is strongest in 2025 as described above. The 
reduction potential in 2025 amounts to 9.1 g CO2/km, which 
is about 24 % of the specific emissions. 

IV. DISCUSSION 
The aim of this paper is to determine the potential benefit 

of carbon optimized BEV charging for the decarbonization of 
the energy system. Our assessment of the flexibility potential 
shows that the aggregated charging profile consists of a 
significant amount of flexibility, which can be used if it is 
incentivized. It reaches a maximum of 6.34 GW at 7 pm on 
the weekend. In addition, charging at workplaces should be 
incentivized by politics in order to harness the flexibility 
supporting PV integration into the grid. The measured impact 
of carbon optimized charging on the emission reaches its 
maximum in 2025. Whether or not this result can be 
transferrable to other countries with an electricity mix 
dominated by RES where CO2 intensive power plants are still 
operating has to be further analyzed. The applied method for 
the computation of hourly CO2 intensities, was chosen 
instead of a method based on the marginal generating power 
plant as in [9] in order to be able to assess also a substantial 
share of BEV. Not shown in this paper but investigated is the 
impact of substituting internal combustion cars with BEV. It 
was found that, the operational emissions can be reduced and 
reach out far more than the optimized charging. In terms of 
abatement costs, the controlled charging is significantly less 
cost-intensive and can serve as argument to promote BEV for 
customers with a green attitude.  
Even if the carbon reduction potential within a system 
without carbon intensive power plants and about 70 % of 
RES as in the chosen scenario within this paper is in absolute 
terms low, the determined flexibility potential of BEV can 
contribute in terms of grid serving flexibility in order to 

 
Fig.  6 BEV charging emissions from 2015 to 2030 with uncontrolled and controlled charging 
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alleviate congestions. Additionally, the need for short term 
flexibility in terms of ancillary services such as frequency and 
voltage control to support system stability can be supported 
by controlled BEV charging in the future [22]. 

V. CONCLUSION AND OUTLOOK 
This paper shows that the flexibility of BEV charging, 

which is derived based on real driving data, is above 77 % 
during peak hours for charging at home with possible delay 
times of more than 10 hours. The flexible share during work 
peak load hours exceeds 89 % with delay times of 4-9 hours. 
Therefore, it is found that incentivizing flexible charging at 
work would greatly contribute to reduce the CO2 emissions. 
Finally, we conclude that flexible charging has the potential to 
reduce 1 mio tons of CO2 accounting to a decline of specific 
emissions of 9.1 g CO2/km or 24 % respectively. 

Further work has to be done in analysing impact factors 
on the flexibility potential such as public charging and 
limited availability at charging stations. Additionally, an 
extension of the work aiming at integrating large depots 
with electric busses or delivery vehicles is interesting. 
Moreover, capabilities to exploit the theoretically 
determined maximal flexibility potential should be analysed. 
Thereto, possible incentives like different tariff structures on 
the individual BEV level or the implementation of local 
energy markets may be subject to further research. 
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