Bidirectional Charging Management – Field Trial and Measurement Concept for Assessment of Novel Charging Strategies

Michael Hinterstocker

FÆ

2019-10-14 E-Mobility Symposium, Dublin

2019

CPI

0000

0000

0000

0000

0000

0000

Overview

Key facts Project duration: 05/2019–04/2022 Funded by German Federal Ministry for Economic Affairs and Energy Lead: BMW	 OEM I OEM I OEM I TSO I
 Focus of research Development of bidirectional charging technology Integration of regenerative electric vehicles into the energy system Design of the value chain V2G/V2H/V2B Piloting of the overall system 	 DSO bayernuerk Scientific support FFF FFFF Scientific support Customer research Customer research

Project objectives – EVs support the electricity grid

Use cases for beneficial application of flexibilities

Economical implementation of technical solution concepts for the use cases

Regulatory check for feasibility of use cases/ Compatibility with GDEW

Demonstration of customer value, as well as system serviceability

Proof of economic efficiency and CO₂ advantage

Creation of the basis for a comprehensive "win-win" situation for customers, manufacturers (OEM and charging infrastructure), grid and energy industry

Project schedule

Project structure.

Development, selection and evaluation of use cases

Definition of relevant use cases		Methodology development Creation of an overview of relevant actors Description and visualization of use cases
Deduction and evaluation of business models	•	Deduction of business models from the point of perspective of different stakeholders Further development in workshops with the partners Evaluation of business models
Economic feasibility study	•	Estimation of possible revenues Consideration of the expected availability of the EV

Use case	Revenue creation	Customer group	Project aim
Time arbitrage (intraday)	Vehicle-to-grid	Private and commercial	Trial operation
Increased self-consumption	Vehicle-to-home	Private	Trial operation
Peak-shaving	Vehicle-to- business	Commercial	Trial operation
Primary control provision	Vehicle-to-grid	Private and commercial	Lab operation
Time arbitrage (day-ahead)	Vehicle-to-grid	Private and commercial	Lab operation
Local network service	Vehicle-to-grid	Private and commercial	Lab operation
Redispatch	Vehicle-to-grid	Private and commercial	Lab operation
Provision of reactive power	Vehicle-to-grid	Private and commercial	Lab operation
Tariff optimized charging	Vehicle-to-home	Private	Lab operation
"Real" green electricity (PPA)	Vehicle-to- business	Commercial	Lab operation
Fleet management	Vehicle-to- business	Commercial	Lab operation
Emergency power supply	Vehicle-to-home	Private and commercial	Simulation
"Real" green electricity (CO ₂ - optimized)	Vehicle-to- business	Commercial	Simulation

Comprehensive analysis of effects on the distribution grid

• Deduction of recommendations

Extensive simulation of effects on the transmission grid level

Simulation environment

- Further development of the simulation model ISAaR for the analysis of the effects of on the electricity market and on the transmission grid
- Data acquisition: European grid data, demand data, parameterization of electric vehicles

Energy system simulation

- Modelling of bidirectional units with priceand emission-optimized charging strategies
- Evaluation of the feedback effects on the energy system:
 - Electricity market (emissions, prices)
 - Transmission grid
- Deduction of recommendations

Data acquisition, processing and evaluation in the field test

- **Data** Measurement concepts for relevant use cases
- acquisition Analysis of required data for evaluation
 - Design and operation of a centralized data acquisition system for all partners

Data analysis • Collection and fusion of measurement data

- Data preparation and synchronization
- Definition of relevant evaluations
- Development of automated tools for data evaluations

Ø

Transmission

Distribution

ME 8

Michael Hinterstocker Research Associate FfE GmbH Phone: +49 89 158121–53

E-Mail: mhinterstocker@ffe.de

FfE GmbH Am Blütenanger 71 80995 München Phone: +49 89 158121–0 E-Mail: info@ffe.de Web: www.ffe.de Twitter: @FfE_Muenchen