

Determination of the integration and influencing potential of rapid-charging systems for electric vehicles in distribution grids Marcel Kurth, M.Sc.

Introduction Motivation

Current development of EVs in Germany						National goal				
■EVs ■Chargi	ng poir	nts					9470	59951	77153	2020: 1 Mio. EVs
				450	26006	35648	4			Charging infrastructure
		4386	13548	4720	5553	5571	5836	6517	7407	Need for countrywide rapid charging
DEC JUN 11 12	DEC 12	JUN 13	DEC 13	JUN 14	DEC 14	JUN 15	DEC 15	JUN 16	DEC 16	infrastructure

1) BDEW, Inquiry on charging Infrastructure

Introduction Goal

*http://www.isb.rwth-aachen.de/cms/ISB/Forschung/Projekte/~mdac/STELLA/

Methodology

Investigation scope and assumptions

Results

Methodology Integration and influencing potential

Nodal potential

Integration potential $IntP_i^0$

What is the individual IntP at all gird connection points?

 $IntP_i^0$: maximum additional installable power to one node *i* considering

- Max. DT loading
- Max. cable loading
- Voltage constrains

MV grid investigations: installation of rapid-charging station at LV busbar; considering DTs' apparent power

What is the max. installable charging power within a clustered square area?

Clustered square area values equal the maximum IntP value of all nodes inside that area

Influencing potential InfP_i

Where in the grid are sites with sufficient IntP (e.g. >100 kW) and at the same time with small influence on the InfP of all other sites?

Influencing potential of a rapid-charging station at node i ($InfP_i$) equals the sum of the integration potential reductions of all other (n-1) nodes

$$InfP_{i} = \sum_{j} IntP_{j}^{0} - IntP_{j}^{new}, j \in \mathbb{N} \setminus i, \mathbb{N} = [1 \dots n]$$

When searching for site with a certain IntP (e.g. > 100 kW), what is the lowest InfP within a clustered square area?

Clustered square area values equal the minimum InfP value of all nodes inside the respective square area

Methodology

Investigation scope and assumptions

Results

Investigation scope and assumptions MV grid of South Düsseldorf

Investigation scope and assumptions MV grid of Stuttgart

→ HV node

Investigation scope and assumptions

LV grid of Stuttgart-Hausen

Methodology

Investigation scope and assumptions

Results

Results MV grid of South Düsseldorf

- IntP mainly limited by DT overloading
- Large parts of the grid have suitable sites for 100 kW rapid-charging stations (high IntP, small InfP)

Results MV grid of Stuttgart

IntP	$0 \ kW$	0 100 kW	$\geq 100 kW$				
	7.9%	28.2%	63.9%				
InfP	0 <i>k</i>	:W	0 <i>kW</i>	0 100 kW	$\geq 100 \ kW$		
	36.	1%	57.0%	2.4%	4.5%		

- IntP mainly limited by DT overloading
- 59.4% of the DTs are suitable sites for 100 kW rapid-charging stations

Results LV grid of Stuttgart-Hausen

IntP	0 <i>kW</i>	$0 \dots 100 kW$	$\geq 100 kW$				
	0%	61.0%	39.0%				
InfP	0 <i>k</i>	W	0 <i>kW</i>	0 100 kW	$\geq 100 \ kW$		
	61.	0%	0.9%	3.4%	34.8%		

- IntP mainly limited by house connection cables
- 4.3% of the builings are suitable for 100 kW rapid-charging stations

Methodology

Investigation scope and assumptions

Results

Results – MV grid of Düsseldorf and Stuttgart

- Large number of suitable sites for 100 kW rapid-charging stations despite a worst-case load modelling assumption
- Main limiting factor for integration potential in case of installation at the DT's busbar: DTs' apparent power

Results – LV grid of Stuttgart-Hausen

- Connection cables of most households and buildings not suitable for 100 kW rapid-charging stations
- Rare suitable sites for 100 kW rapid-charging stations (4.3%)

Next steps

- Electric layer has to be added to the multi-objective assessment model
- Further investigations for the integration of home charging systems (11 kW) into LV girds

Thank you for your attention

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Coauthors:

Dipl.-Ing. Dipl.-Wirt.Ing. Markus Gödde, Univ.-Prof. Dr.-Ing. Armin Schnettler Institute for High Voltage Technology, RWTH Aachen University

Dr. Alexander Probst

Netze BW GmbH

Dipl.-Ing. Dirk Pieper Netzgesellschaft Düsseldorf mbH

Marcel Kurth, M.Sc.

RWTH Aachen University Institute for High Voltage Technology Department Sustainable Distribution Systems

Tel. +49 (0) 241 / 80 49379 m.kurth@ifht.rwth-aachen.de