

BERLIN, 23.10.2017

Grid compatible flash charging technology

E-Mobility Integration Symposium

Shaping urban mobility

e-bus solutions, infrastructure and tools

ABB's portfolio

- Depot-Charging DC fast-charging at the bus depot
- OppCharge automated DC fast-charging solutions with charging powers from 150 to 600 kW and remote connectivity features
- TOSA catenary-free high-capacity fully electric articulated bus system with 15-seconds flashcharging at selected bus stops
- Drivetrain solutions, including traction converters, energy packs, motors and other on-board components
- Associated control and monitoring tools to operate and maintain customers valuable assets under the ABB Ability[™] platform
- Prefabricated e-bus substations / MV and HV substations providing full integration into the AC power grid

Flash Charging Technology

Technical functionality

Project Approach

Energy simulation based on key parameters

Line identification

Selecting the bus line (s)

Calculation of energy demand

Identification of key parameters

- Route length
- Commercial speed
- Timetable
- Passenger capacity
- Auxiliaries (heating, air condition)
- Specify battery capacity

Choosing the right solution

TOSA e-bus system

Intelligent energy management

Goal: Reduce the energy storage on board **High energy efficiency and cost efficiency**

TOSA e-bus system

Flash / Terminus / Depot feeding stations

Energy storage for peak shaving designed according to local grid requirements and line's operation.

Three types of chargers:

- Flash-charging stations at selected bus stops (15 sec)
- Terminal feeding stations (2-5 min)
- Depot stations (30 min)

Quantity of flash-charging stations depends on route profile and service requirements

Operating TOSA

Total cost of ownership - requirements

Timetable

High-power in-route charging at selected bus stops and short layover time at terminal \rightarrow same driving hours and commercial speed as a diesel fleet

High-passenger capacity

All technology mounted on the roof (all floor for passengers) for articulated and double-articulated buses

Long-life battery

Thanks to in-route charging principle, the highpower/low-energy battery pack is used in its optimal operating range

Operating TOSA

Total cost of ownership - requirements

for 600,000 km)

TOSA technology

First articulated e-bus under real-life operating conditions from May 2013 to end of 2014

TOSA in Geneva

Line 23, connecting Geneva's airport with suburban Geneva

TOSA enables emission-free public transport in Geneva

#