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Abstract—To achieve national climate protection goals,
the decarbonisation of the transport sector is of primordial
importance. In this regard, electromobility has become one of
the most promising automotive trends.
However, a large-scale adoption of electric vehicles (EVs)
would considerably burden the existing energy grid, especially
in high-traffic areas. From the power industry’s perspective
it is essential to anticipate the power capacities required for
EV-charging in order to ensure sufficient power transmission.
As a consequence, spatial-temporal forecast techniques for
electromobile loads become more and more important for
power system planing and operation.
Since airports and fairs accommodate the world’s largest
parking facilities and therefore are particularly affected by
EV mass deployment, the present paper1 seeks to analyse
the forthcoming EV energy demand on these locations in
more detail. Based on project experience at Stuttgart Airport
and Fair, a novel forecast model for electromobile loads is
introduced within this work, followed by a discussion of the
predicted energy demand and its influence on local power
consumption.

Keywords— forecast model; electric vehicles; demand profiles;
airport; trade fair; energy consumption; Matlab R©

I. INTRODUCTION

Over the last few years, German airports made consid-
erable efforts to reduce ground emissions involved in the
entire aircraft handling process. Most projects thereby focus
on electromobile aircraft taxiing, towing and loading to
mitigate negative effects of conventional apron vehicles on
people and the environment [1][2][3]. Beside testing these
new technological approaches, extensive life cycle analy-
ses were conducted to attest the efficiency and ecological
meaningfulness of air-sided EV-deployment [4]. However,
only few initiatives focus on electrifying the land-sided
traffic even though airports draw thousands of passenger
cars per day and therefore are particularly suited to act as
EV-aggregators to participate in electricity markets [5]. In
the Netherlands, a consortium of researchers and architects
developed different design scenarios for sustainable passen-
ger transport at Schipol Aiport by combining wireless EV-
charging with renewable energy generation and customized
EV services [6]. Concerning the resulting network load, the
study predicted local power peaks up to 30MW arising from
six thousand EVs by 2030. An alarming trend given the
fact that the world’s largest trade fair in Hanover provides

1This work was sponsored by the Flughafen Stuttgart GmbH and the
Landesmesse Stuttgart GmbH within the framework of the project Strate-
giestudie Elektromobilität

more than 29000 parking lots. Still, specific knowledge on
travel behaviour modelling and simulation is considered the
greatest deficiency of [6] which emphasises the need for
more accurate forecast techniques.
Regarding the energetic impact a widespread EV-use would
impose on large venues such as fairs, comparatively little
literature is available. In contrast to traffic hubs like airports,
the occupancy rate of those locations is primarily event-
driven which leads to a more concentrated EV energy de-
mand that further aggravates the grid situation. In such cases,
the EV load is often approached by historic parking data
[7]. Yet, this method alone allows no reliable conclusions
concerning the vehicles’ state of charge (SOC) upon arrival
and therefore needs to be complemented with mobility
behaviour analysis.
The power capacity required for EV-charging is influenced
by many factors, such as the number of electric vehicles,
their spatial distribution, their individual usage, their techni-
cal features such as battery capacity or charging performance
and most importantly the owner’s driving behaviour. A com-
prehensive review on modelling the EV mobility behaviour is
given in [8], stating that generally rough assumptions were
made when addressing mobility issues in energy network
calculations. These assumptions often base on aggregated
data composed of field test results [9] and national mobility
studies that derive universal driving patterns and average
trip distances depending on the vehicle use [5][10][11].
In recent years, there has been a rapid development in
traffic research due to modern data sensors, analysis software
and communication systems (such as ITS, GIS, GPS or
roadside video detection) that have considerably facilitated
data acquisition in the transport sector. In [12], an origin
destination analysis from intelligent transportation research
was used to reduce uncertainties related to vehicle motion.
Despite their accuracy, those approaches often fail due to
budget constrains or missing data.
Another shortcoming of related literature is the negligence
of technical progress when predicting the forthcoming EV
energy demand [5][8][10][11][12]. The EV battery capacity
can be assumed to rise significantly over the next few years
which leads to higher charging performances and EV ranges.
Both developments will considerably change the present
charging behaviour in public places. Besides, existing studies
often do not provide sufficient information on load prob-
abilities but display maximum or average EV loads only.
The present paper aims to address those shortcomings and
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is structured as follows: Section II presents the case study
and introduces all variables and constraints used within the
modelling process. Section III focuses on elucidating the
forecast model for the use cases airport and fair, whereas
Section IV deals with the EV load discussion. A summary
assessment is given in Section VI.

August 31, 2017

II. CASE STUDY DESCRIPTION

A. Case study

The present work is an integral part of the Strategiestudie
Elektromobilität which has been conducted in 2016/17 by
the Fraunhofer IAO on behalf of Stuttgart Airport and Fair
as part of their sustainability strategies [15][16]. The project
aimed to develop a coherent concept for land-sided charging
infrastructure roll-out on both locations. Beside identifying
upcoming charging infrastructure needs, the project dealt
with the spatial location and technical design of new
charging poles. The here mentioned forecast model for
electromobile loads has been developed within this project.
Its objective is to predict the upcoming EV energy demand
at Stuttgart Airport and Fair from 2017 to 2027 arising
from passengers, visitors, exhibitors and employees in order
to (a) ensure a demand-orientated charging infrastructure
roll-out, (b) to identify possible load shift potentials and (c)
to evaluate the necessity of grid-strengthening measures.
The model outputs are typical EV peak loads throughout the
day (in kW) and site-specific energy turnovers (in kWh/d)
depending on the EV market penetration and technological
progress.

Stuttgart Airport ranks amongst the busiest international
airports in Germany, covering 100 destinations worldwide.
However, with an annual passenger volume of approximately
10.5 million and ten thousand people working on-site, the
airport still belongs to the smaller ones when compared
to international aviation hubs. This is further illustrated in
Figure 1 (above) whose schematic overview provides a better
knowledge on the paper’s validity. Since land-sided EV loads
on airports are not only dependent on passenger figures
but on their belonging model split as well, the following
results may still be valid for larger (supposingly inner-
city) airports which are better connected to public transport
systems. Tokyo Airport, for example, has a passenger volume
eight times higher than Stuttgart but features only one third
of its parking capacity which leads to the conclusion that
electromobile grid impacts at Stuttgart Airport will be more
significant. As evident in the chart below, similar comments
apply for Stuttgart Fair in international comparison. It is the
tenth biggest fair in Germany with an exhibition area of
approximately 86.500m2 and a total of 1.3 million visitors
in 2016.
Although EV deployment on one of the two locations already
represents a challenging task, the poignancy of the present
work gains further weight when taken into account that both
sites are situated next to each other, sharing the same local
energy network.
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Fig. 1. Overview international airports and fairs according to own research
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Fig. 2. Assumed EV market penetration over time including the major
goals of the German federal government
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B. Scientific approach and general assumptions

The forecast model has been implemented in Matlab R©

and methodically divides into two parts:
First, the mobility behaviour of all passengers, employees,
visitors and exhibitors is reconstructed for half an year. For
this purpose, site-specific data were integrated into the model
to identify essential peak-times during the day and to draw
reliable conclusions regarding the SOC of potential EVs. As
data basis served current flight schedules, event calendars,
passenger surveys, employment figures, typical work shift
patterns as well as historic parking data. Second, all trips
are omitted which statistically do not result in a loading
EV. To assess the eventuality of a charging event, different
probability factors are determined to account for multiple
scenarios and charging technologies. The factors are strongly
influenced by four time-dependant variables to account for
different forecast horizons. Those variables are:

1) the market share of electric vehicles until 2027 as
assumed in Figure 2 for a pessimistic, moderate and
optimistic EV scenario

2) the increasing battery capacity due to technical
progress as anticipated in Figure 3 which heightens
the storable energy amount of the underlying EV pool

3) the decreasing plug-in probability of electric vehicles
due to a rising number of (public) charging stations,
larger battery capacities and consequently higher EV
ranges (see Figure 3)

4) the proportion of plug-in hybrid electric vehicles
(PHEV) compared to full electric vehicles as illus-
trated in Figure 3

Since the present work focusses on the forecast method, the
underlying assumptions for the time-dependant variables will
not be explained any further. The model has been imple-
mented in a way that allows these variables to be replaced
quickly if needed. Furthermore the following constrains have
been made:

• It is supposed that the EV consumption of averagely
20kWh/100km remains constant during the next 10
years due to the annihilation of efficiency gains through
further developments towards autonomous driving.

• The mobility behaviour is assumed to remain stable
until 2027.

• In the present work, only land-sided traffic is considered
except for taxis, public buses or business fleets.

• Due to simplicity reasons only charging performances
of 22kW for normal charging and 50kW for DC-fast-
charging are regarded. Both charging processes are
assumed to be rectangular in time with no SOC or
temperature dependencies.

• In order to account for different vehicles types, the
battery capacities of 36 full EVs and 33 plug-in-hybrids
were considered which are currently available on the
German market [14]. The distribution of all battery sizes
is displayed in Figure 4. Moreover, a usable battery
capacity of 80% is assumed which is multiplied by the
battery growth factor defined in Figure 3 according to
the forecast horizon.
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Fig. 4. Battery size distribution of the underlying EV pool as extracted
from [14]

(1) digitalise flight schedule

(2) assign aircraft type

(3) list all potential passenger list(c)

for y = 2017 : 2 : 2027

(4) calculate all time-dependant variables var(y)

for ∀ x ∈ list

c = 1true false
p = arrival p = departure

(5) assign charging probabilities prob(p)

(6) generate random numbers n and z

prob(p) > n
true false

(7) assign ta(p) and trest(p)

(8) calculate Etheo in kWh

z = 1
true false

choose EV choose PHEV
(9) calculate Eprac in kWh

∅

(10) save all charging events for the year y

Fig. 5. Simplified modelling procedure for passenger events

III. FORECAST MODELLING

This section describes the forecast model for Stuttgart
Airport and Fair in more detail by emphasizing its me-
thodical procedure. The aim is to heighten the method’s
comprehensibility to permit a proper assessment of the
simulation results.

A. Airport passengers

As schematically illustrated in Figure 5, the following
procedure is applied to predict the EV energy demand arising
by landing and departing aircrafts:
First of all, the flight schedule of Stuttgart Airport is
digitalised from 30th October 2016 to 25th March 2017 in
order to gain knowledge about the aircrafts’ flight pattern
such as daily arriving and departure times (1). Each arriving
and departing plane corresponds to a flight number which
can be associated to a specific ICAO aircraft type desig-
nator [13]. With the help of these alphanumeric codes, the
corresponding aircraft type is identified with its maximum
number of passenger seats (2). To simulate the greatest
possible passenger movement on the airport, all potential
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passengers and their belonging timestamps – date and time
– are listed by assuming fully occupied airplanes. Each line
of the list corresponds to a single passenger (3). According
to the forecast horizon, all time-dependant model inputs as
illustrated in Figure 2 and 3 are calculated (4). Next, each
passenger is matched with several probability factors which
indicate whether this passenger (or his attendant) triggers a
charging event or not (5).
There are six different probability factors for landing pas-
sengers per year depending on the chosen scenario (pes-
simistic, moderate or optimistic EV market penetration) and
the charging performance applied (normal AC-charging or
DC-fast-charging). Figure 6 displays the composition of all
factors for landing passengers in 2027. The central question
is how many EV-charging events result proportionally from
an arriving aircraft. In case there are as many charging
processes as the aircraft has passenger seats, the probability
factor would be 100%. In praxis, this percentage is reduced
by the aircraft’s average load factor, the share of passengers
that leaves the airport by public transport, the vehicles’ occu-
pancy rate, the EV market penetration, the share of vehicles
that actually park and the users’ plug-in probability. Some
of those partial factors are subjected to great uncertainties
and therefore are strongly dependant on the user’s charging
behaviour and price-sensitivity. In Figure 7 the charging-
probabilities for departing aircrafts are depicted featuring
additional factors for self-driving people who distinguish
themselves in higher resting times and parking probabilities.
To each probability factor and passenger a random number
between zero and one is assigned (6). In case the random
number is inferior to its belonging probability factor, the
passenger becomes a valid result and triggers a charging
event.
By means of statistical variance, the passenger’s arrival at the
airport is computed with the help of the assumptions made
in Table I. The spreadsheet provides further information on
the EV resting time which slightly differs according to the
chosen charging technology and user group. The passenger
origin serves to estimate the vehicle’s SOC upon arrival.
In this context, Table II shows the destination (in km) of
all passengers arriving via plane (see arrival share) and the
origin of those who intend to take off (see departure share).
Based upon these distances, the theoretical energy demand of
each EV is calculated by two terms: The first one represents
the amount of energy which is required to get to Stuttgart
Airport. The second one signifies a randomly chosen energy
demand to account for EVs that did not head to the airport
straight away or were not fully charged beforehand (8).
According to the PHEV-share defined in the previous sec-
tion, the EV type is statistically determined for each valid
charging event. The practical possible energy demand is
therefore limited by the EV resting time and the vehicles’
battery size (9). Next, all valid charging events are stored
for latter use with their belonging data such as the date and
forecast year, EV arrival and resting time, required energy
amount, charging duration and performance as well as the
EV scenario (10). Finally, the steps (4) to (10) are repeated
in an automated fashion in order to determine the charging
events for each forecast horizon.
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TABLE I
ASSUMPTIONS ARRIVAL AND RESTING TIME

arriving aircraft departing aircraft
tA tD

EV DC tA + 10min tD - 120min
arrival AC tA + 10min tD - 120min
time ∓ 30min normally distr. 45min normally distr.
EV DC 10-60min 10-60min

resting AC 30-90min 30-90min , ACself : >8h
time ∓ equally distributed equally distributed

TABLE II
ASSUMPTIONS CATCHMENT AREA PASSENGERS

arrival departure passenger distance variance
share share provenence in km in km

11% 11% Boeblingen 19 ±5
11% 14% Esslingen 16 ±5
2% 3% Goeppingen 38 ±10
− 3% Heilbronn 74 ±15
5% 8% Ludwigsburg 30 ±10
− 3% Ostalbkreis 94 ±20

37% 14% Stuttgart 13 ±7
4% 6% Tuebingen 33 ±5
4% 9% Rems-Murr-Kreis 52 ±10
4% 4% Reutlingen 30 ±5
22% 25% Other 50 ±45
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B. Airport employees

The charging events arising from airport employees are
approached in a similar manner. Whereas the procedures (4)
to (10) of Figure 5 remain methodically the same, the steps
(1) to (3) have to be adjusted accordingly.
For this purpose, all employment groups that are perma-
nently stationed at the airport are identified with their belong-
ing headcount and work model. Table III illustrates in a sim-
plified form the employment structure at Stuttgart Airport for
approximately 8000 employees. As shown in Table IV, five
different work models are considered: core hours, flight op-
eration, the flight crews’ work schedule, 24h shift operation
and the opening hours of divers shops and restaurants which
have been extracted from the airport’s information booklet.
Due to the long business hours at airports, some work models
involve shift system so that corresponding employees need
to be divided appropriately. By listing all employees with
their belonging work shift and duplicating them from 30th

October 2016 to 25th March 2017, the mobility behaviour of
the airport staff is reconstructed. Analogous to the previous
section, each employee movement is matched with different
probability factors indicating whether a charging event is
triggered or not. When contemplating Figure 8, it becomes
apparent that DC-charging is no longer considered here.
In general, employees remain approximately eight hours at
work, therefore their vehicles can be charged slowly through-
out the day to lessen grid impacts. However, additional
probability factors for weekends are introduced to account
for lower staff requirements on Saturday and Sunday.

C. Fair visitors, exhibitors and employees

To reconstruct the mobility behaviour at Stuttgart Fair,
there has to be distinguished between visitors and exhibitors
on one side and employees on the other. The main difference
is that data on the first group are already available in
car figures, which considerably shortens the corresponding
probability path displayed in Figure 9. As underlying data
basis served an internal event calendar for 2016 providing
detailed information on the start and end of each event, the
number of parking vehicles (from exhibitors and visitors)
and the hall occupation. The daytime distribution of all
arriving cars is determined by means of mobile data analyses
from Google Analytics.
As for the fair staff, 300 regular employees were considered,
thereof 50% working in core hours and 50% with event-
driven working schedules. For each event a minimum of 20
people as event-team is assumed plus additional 2% of the
actual car traffic this day in order to account for external
contractors occupied with event execution, catering and tech-
nical support. Besides, a build-up-team is assumed which is
responsible for stand construction and dismantling, technical
infrastructure, hall decoration and cleaning. Stuttgart Fair
provides nine different exhibition halls including the Inter-
national Congress Centre (ICS). The day before an event
starts, 40 employees are assumed for each occupied hall
for preparation purposes. Furthermore, the same number of
employees are assumed on the evening of the last event
day for the dismantling process. Due to the concentrated
vehicle arrival only normal charging is considered within
this section.

TABLE III
EMPLOYMENT GROUPS AND THEIR ASSUMPTIONS

share employment group working model in %
% (perm. stationed at airport ) C F P 24 O

27% airline staff, flight crew - 50 50 - -
20% domiciled companies airport 90 10 - - -
13% runway monitoring, passenger

handling, ground handling ser-
vices and flight operations

- 85 - 15 -

10% customs, (federal) police, secu-
rity service and flight safety

- 95 - 5 -

7% haulage and cargo handling 40 60 - - -
6% retailers and restaurant business 5 25 - - 70
5% energy and water supply,

cleansing and waste disposal
5 65 - 30 -

3% commercial department, inter-
nal services, public relation

90 10 - - -

3% facility and IT management 80 - - 20 -
6% other (accumulated) 100 - - - -

TABLE IV
ASSUMPTIONS WORK MODELS & SHIFTS

name of the from - to no. of shift begin
working model hh:mm shifts hhrst/hhnd/hhrd

C core hour 8:00 - 17:00 none 8
F flight operation 6:00 - 23:30 3 4/10/16
P flight crew 4:00 - 20:00 none equally distributed
24 24h operation 0:00 - 0:00 3 5/13/21
O opening hours variable 1-2 airport booklet

reduced staff on weekends
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IV. SIMULATION RESULTS

This section analyses the predicted EV load on both loca-
tions and discusses its influence on local power consumption.
The EV demand profiles are derived from the charging events
reconstructed in the previous chapter according to a method
applied in [17]. Every single charging event in 2017 is rep-
resented by a rectangle spanned by the parameters charging
power and duration. The resulting area indicates the charged
energy in kWh. By assembling all charging rectangles day
by day according to their temporal occurrence, daily demand
profiles are derived. Next, all daily load profiles are stacked
one above the other to determine the maximum, average and
median EV load for any time of the day at Stuttgart Airport
and Fair by using the boxplot function within the Matlab
environment. In doing so essential peak-times are identified
whose knowledge is important to develop site-specific load
management strategies for selected user groups.
This procedure is repeated for each forecast horizon to
illustrate the maximum load development from 2017 to 2027
to evaluate the necessity of grid-strengthening measures.
Furthermore, the daily energy demand required for EV-
charging is analysed for each forecast year and EV scenario
to facilitate a cost-effective operation of the charging in-
frastructure. Last but not least, the predicted EV demand is
compared the load profile of Stuttgart Airport and Fair in
order to assess the impact of electric vehicles on existing
demand profiles.

A. Stuttgart Airport

In course of the e-mobility study outlined in section II,
three main locations for EV-charging infrastructure were
identified. Most charging events from passengers and em-
ployees are assigned to a central location which features
a grid capacity of 420kW for AC- and DC-charging. Due
to the large expansion of the airport area, a second site is
chosen with exclusively AC-charging poles for employees.
A third location of 332kW is envisaged to host AC- and
DC-charging infrastructure for e-taxis and fast-charging pas-
sengers. For reasons of space, the following EV loads are
concentrated in one single location even though all three
sites were analysed individually during the project.
Figure 10 displays the maximum and average EV loads
depending on the forecast year and EV scenario. Since most
of the charging events occur at the central location mentioned
above, the belonging connected load of 420kW is considered
the limiting factor. As can be seen from the vertical axis,
this limit is exceeded in 2025 for the first time but only
for an optimistic EV market penetration. Therefore, grid-
strengthening measures are not required in the medium term.
However, in order to prevent cost-intensive grid expansion
in the long term, the exploitation of existing load shift
potentials is recommended. The staff user-group is well
suited for this purpose since employees cause half of the
EV-charging events and usually remain long on the airport
premises. The energy supply of belonging EVs could be
reduced dynamically according to the site’s overall power
consumption.
Analogous to the maximum load, Figure 11 displays the
average energy demand per day and forecast year. By 2027
the daily required energy amount corresponds to roughly

50 Smart full-charges (17.6kWh each) for a moderate EV
market penetration. Under the given assumptions, the DC-
share represents 25% of the total energy. However, the usage
of DC-charging infrastructure will predominately be price-
driven in future.
In general, it can be said that relatively large energy amounts
are turned over each day at relatively moderate power rates.
The main reason for this lies in the continuous operation of
the airport, which prevents any critical power peaks. Figure
12 confirms this statement by displaying the electromobile
load throughout the day for an optimistic EV scenario in
2027.
In Figure 13, the latter is compared with the airport’s
overall energy consumption. It becomes apparent that even
in long term electromobile loads arising from passengers and
employees will have no significant influence on the overall
energy consumption and generation. Even the maximum EV
load of nearly 0.5MW by 2027 represents only 12.5% of the
airport’s base load and 7% of its peak load. Nonetheless, EV
grid impact will rise when further taking into account (a)
air-sided EV deployment and (b) additional land-sided loads
from electromobile taxis, buses, business fleets and delivery
vehicles.

B. Stuttgart Trade Fair

The maximum EV load at Stuttgart Fair is strongly
characterised by few major events which result in high
power peaks as depicted in Figure 14 and 16. Compared
to Stuttgart Airport, the predicted maximum loads are three
to four times higher. In contrast to the high power peaks,
the averagely charged energy amount per day is relatively
small. In late summer, the fair usually hosts few events
which slightly falsifies the average EV loads displayed in
Figure 15. The energy quantities charged on major events
will be considerably higher, especially on trade fairs with
electromobile focus.
The fair’s event-driven occupation is not favourable for a
cost-effective operation of the charging infrastructure either.
From an economic point of view, it is not recommended
to scale the charging infrastructure at maximum load, since
many stations would remain unused most of the time. Mobile
charging possibilities, which can be settled up demand-
orientated, might be a convenient solution to prevent unnec-
essary operating costs. Furthermore, the airport’s proximity
should be used to outsource charging events on major events.
In Figure 17, the EV load is compared with the fair’s
overall energy consumption. It can be seen that the build-
ing load is also subjected to strong power fluctuations,
strongly correlating with the electromobile power peaks.
The maximum EV load in 2027 with approximately 1.8MW
represents half of the average fair load, but only 9% of its
peak load which has been 16MW once. Since it can be
assumed, that building and EV peaks continue to correlate
in future, electromobility will always play an inferior role in
terms of overall energy consumption. However, the existing
power network is already considerably stressed on major
events so EV-deployment further aggravates the situation.
Therefore load shifting potentials arising from exhibitors and
employees should be used mandatorily.
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Fig. 10. Predicted average and maximum EV loads at Stuttgart Airport
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Fig. 11. Predicted energy amounts charged per day at Stuttgart Airport
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Fig. 12. Airport: predicted EV loads by 2027 for an optimistic EV scenario
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Fig. 13. Airport load compared to the predicted EV load by 2027
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Fig. 14. Predicted average and maximum EV loads at Stuttgart Fair

2017 2019 2021 2023 2025 2027
0

200

400

600

800

1000

1200

en
er

gy
in

k
W

h

8
29 90

231

454

637

Range Pro

Range Moderate

Range Contra

AC share

Fig. 15. Predicted energy amounts charged per day at Stuttgart Fair
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Fig. 16. Fair: predicted EV loads by 2027 for an optimistic EV scenario
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V. CONCLUSION

The present work introduced a transferable model for
electromobile loads at airports and fairs. Due to the
integration of site-specific data and the consideration of
technical progress and its influence on the user behaviour,
the approach permits an accurate reconstruction of future
EV-charging events. The paper proves in the first place
that alarming power peaks up to 30MW as predicted in
[6] by 2030 are rather improbable for the considered use
cases. For an optimistic EV market penetration of 20%,
uncontrolled EV loads up to 0.5MW for Stuttgart Airport –
respectively 2MW for Stuttgart Fair – are judged to be more
realistic by then. Generally, it can be said that electromobile
loads arising from passengers, visitors and employees will
continue to play a minor role when compared to the sites’
overall energy consumption. However, EV loads further
burden the existing power grid which is partially already
stressed by major events such as electricity-intensive trade
fairs. At this point, it has to be mentioned that public
transport remains the most effective method to mitigate
negative impacts on power systems and the environment.
The planned expansion of the suburban railway station
at Stuttgart Airport and Fair into a regional and long-
distance station will prove very valuable in this regard.
Apart from that, airports and fairs – as potential energy
supply companies – are rather well suited to benefit from
electromobility due to the opportunities that arise from
local load shift potentials and renewable energy generation.

The model further allows a wide range of applications.
Due to the fact that the mobility behaviour of every single
passenger, visitor, exhibitor and employee is reconstructed,
the maximum number of parallel charging events can easily
be simulated for various scenarios, which is particularly
useful for infrastructure dimensioning. By additionally pro-
viding information on the likelihood of EV loads, a cost
optimized charging infrastructure roll-out can be achieved.
Moreover, the indication of maximum loads serves to evalu-
ate the necessity of grid-strengthening measures. The latter
can be significantly reduced by this model since it identifies
essential peak-times and load shift potentials to derive user-
group specific load management strategies. Based on the
average energy turnovers per day, first economic and ecolog-
ical assessments can be done to ease infrastructure financing
and to estimate future CO2-savings. Those data also serve
as decision basis on weather additional power generation
capacities are required to satisfy future EV demands or not.
Due to the simulation of the vehicles’ resting time, individual
billings systems can be developed in order to heighten the
site-specific occupancy rate of the charging infrastructure.
Nonetheless, further research is needed to improve the
model. First of all, a SOC dependant charging curve could
be implemented to heighten the model’s accuracy with
DC-charging processes. Furthermore, the model assumed
statical power performances of 22/50kW only. This might
be improvable by attributing a maximum power performance
to each EV. Due to the long-term simulation, a temperature
dependant approach would be imaginable to account for
higher EV energy consumption in winter.
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